trapezoidal rule for integral function

1 回表示 (過去 30 日間)
lulu
lulu 2022 年 8 月 22 日
編集済み: Akshat Dalal 2023 年 10 月 8 日
I need to use this rule for the following function, I tried but I obtained error, here the code and in the butom I show a function that I want to use there the trapezoidal
clear all;
xl=0; xr=1; %domain[xl,xr]
J=100; % J: number of dividion for x
dx=(xr-xl)/J; % dx: mesh size
tf=1000; % final simulation time
Nt=100000; %Nt:number of time steps
dt=tf/Nt;
c=50;
s=600; % paremeter for the solution
lambdau1=0.0004; %turning rate of susp(right)
lambdau2=0.0002; %turning rate of susp(left)
lambdav1=0.0003; %turning rate of infect(right)
lambdav2=0.0001; %turning rate of infect(left)
beta=0.1; % transimion rate
alpha=0.0; %recovery/death rate
b=0.1;
d=0.5;
bV=0.3;
dV=0.1;
au=0.0003; % advection speed - susceptible
av=0.0001; % advection speed - infected
A=0.01;
mu1=au*dt/dx;
mu2=av*dt/dx;
w = linspace(xl,xr,J);
if mu1>1.0 %make sure dt satisfy stability condition
error('mu1 should<1.0!')
end
if mu2>1.0 %make sure dt satisfy stability condition
error('mu2 should<1.0!')
end
%Evaluate the initial conditions
x=xl:dx:xr; %generate the grid point
%fr=0*exp(-c*(x-0.5).^2); %dimension f(1:J+1)initial conditions of right moving suscp
%fl=0*exp(-c*(x-0.5).^2); %initial conditions of left moving suscep
%gr=0.5*exp(-s*(x-0.5).^2); %initial conditions of infected
%gl=0.5*exp(-s*(x-0.5).^2); %initial conditions of infected
k=6*pi/(xr-xl);
fr=0+0.01*(1+sin(k*x)); %dimension f(1:J+1)initial conditions of right moving suscp
fl=0+0.01*(1+sin(k*x)); %initial conditions of left moving suscep
gr=0.25+0.01*(1+sin(k*x)); %initial conditions of infected
gl=0.75+0.01*(1+sin(k*x));
%store the solution at all grid points for all time steps
ur=zeros(J+1,Nt);
ul=zeros(J+1,Nt);
vr=zeros(J+1,Nt);
vl=zeros(J+1,Nt);
v=zeros(J+1,Nt);
K=1/(0.05*sqrt(2*pi))*exp(-0.5*(s/0.05)^2);
y= b*K*v(x+s)+d*K*ur(x+s);
Array indices must be positive integers or logical values.
F = int(y,w);
z = trapz(w, y);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tt=0:tf/(Nt-1):tf;
[T,X]=meshgrid(tt,x);
%find the approximate solution at each time step
for n=1:Nt
t=n*dt; % current time
if n==1 % first time step
for j=2:J % interior nodes
%%%%%%%%%%%%%%%%%%%upwind of right-moving of susceptible
ur(j,n)=fr(j)-0.5*mu1*(fr(j)-fr(j-1))+dt*lambdau2*(0.5+0.5*tanh(1-z))*fl(j)-dt*lambdau1*(0.5+0.5*tanh(1-z))*fr(j)-dt*beta*fr(j)*(gr(j)+gl(j))+dt*0.5*alpha*(gr(j)+gl(j));
%%%%%%%%%%%%%%%%%%%upwind of left-moving of susceptible
ul(j,n)=fl(j)+0.5*mu1*(fl(j+1)-fl(j))+dt*lambdau1*(0.5+0.5*tanh(1-z))*fr(j)-dt*lambdau2*(0.5+0.5*tanh(1-z))*fl(j)-dt*beta*fl(j)*(gr(j)+gl(j))+dt*0.5*alpha*(gr(j)+gl(j));
%%%%%%%%%%%%%%%%%%%upwind of right-moving of infected
vr(j,n)=gr(j)-0.5*mu2*(gr(j)-gr(j-1))+dt*lambdav2*(0.5+0.5*tanh(1-bV*(gr(j)+gl(j))+dV*fr(j)))*gl(j)-dt*lambdav1*(0.5+0.5*tanh(1-bV*(gr(j)+gl(j))+dV*fl(j)))*gr(j)+dt*beta*fr(j)*(gr(j)+gl(j))-dt*alpha*gr(j);
%%%%%%%%%%%%%%%%%%%lupwind of left-moving of infected
vl(j,n)=gl(j)+0.5*mu2*(gl(j+1)-gl(j))+dt*lambdav1*(0.5+0.5*tanh(1-bV*(gr(j)+gl(j))+dV*fl(j)))*gr(j)-dt*lambdav2*(0.5*+0.5*tanh(1-bV*(gr(j)+gl(j))+dV*fr(j)))*gl(j)+dt*beta*fl(j)*(gr(j)+gl(j))-dt*alpha*gl(j);
end
%peridic BC for right moving of suscep(j=J+1,j+2=1)
ur(J+1,1)= fr(J+1)-0.5*mu1*(fr(J+1)-fr(J))+dt*lambdau2*(0.5+0.5*tanh(1-b*(gr(J+1)+gl(J+1))+d*fr(J+1)))*fl(J+1)-dt*lambdau1*(0.5+0.5*tanh(1-b*(gr(J+1)+gl(J+1))+d*fl(J+1)))*fr(J+1)-dt*beta*fr(J+1)*(gr(J+1)+gl(J+1))+dt*0.5*alpha*(gr(J+1)+gl(J+1));
%peridic BC for right moving of suscep(j=1,0=J)
ur(1,1)=fr(1)-0.5*mu1*(fr(1)-fr(J))+dt*lambdau2*(0.5+0.5*tanh(1-b*(gr(1)+gl(1))+d*fr(1)))*fl(1)-dt*lambdau1*(0.5+0.5*tanh(1-b*(gr(1)+gl(1))+d*fl(1)))*fr(1)-dt*beta*fr(1)*(gr(1)+gl(1))+dt*0.5*alpha*(gr(1)+gl(1)); %peridic BC for right moving
%peridic BC for left moving of suscep(j=1)
ul(1,1)=fl(1)+0.5*mu1*(fl(2)-fl(1))+dt*lambdau1*(0.5+0.5*tanh(1-b*(gr(1)+gl(1))+d*fl(1)))*fr(1)-dt*lambdau2*(0.5*+0.5*tanh(1-b*(gr(1)+gl(1))+d*fr(1)))*fl(1)-dt*beta*fl(1)*(gr(1)+gl(1))+dt*0.5*alpha*(gr(1)+gl(1)); %peridic BC for left moving; %peridic BC for left moving
%peridic BC for left moving of suscep(j=J+1)
ul(J+1,1)=fl(J+1)+0.5*mu1*(fl(1)-fl(J+1))+dt*lambdau1*(0.5+0.5*tanh(1-b*(gr(J+1)+gl(J+1))+d*fl(J+1)))*fr(J+1)-dt*lambdau2*(0.5*+0.5*tanh(1-b*(gr(J+1)+gl(J+1))+d*fr(J+1)))*fl(J+1)-dt*beta*fl(J+1)*(gr(J+1)+gl(J+1))+dt*0.5*alpha*(gr(J+1)+gl(J+1)); %peridic BC for right moving(j=J+1); %peridic BC for left moving
%peridic BC for right moving of infected(j=J+1)
vr(J+1,n)=gr(J+1)-0.5*mu2*(gr(J+1)-gr(J))+dt*lambdav2*(0.5+0.5*tanh(1-bV*(gr(J+1)+gl(J+1))+dV*fr(J+1)))*gl(J+1)-dt*lambdav1*(0.5+0.5*tanh(1-bV*(gr(J+1)+gl(J+1))+dV*fl(J+1)))*gr(J+1)+dt*beta*fr(J+1)*(gr(J+1)+gl(J+1))-dt*alpha*gr(J+1);
%peridic BC for right moving of infected(j=1)
vr(1,n)=gr(1)-0.5*mu2*(gr(1)-gr(J))+dt*lambdav2*(0.5+0.5*tanh(1-bV*(gr(1)+gl(1))+dV*fr(1)))*gl(1)-dt*lambdav1*(0.5+0.5*tanh(1-bV*(gr(1)+gl(1))+dV*fl(1)))*gr(1)+dt*beta*gr(1)*(gr(1)+gl(1))-dt*alpha*gr(1);
%peridic BC for left moving of infected(j=1)
vl(1,n)=gl(1)+0.5*mu2*(gl(2)-gl(1))+dt*lambdav1*(0.5+0.5*tanh(1-bV*(gr(1)+gl(1))+dV*fl(1)))*gr(1)-dt*lambdav2*(0.5*+0.5*tanh(1-bV*(gr(1)+gl(1))+dV*fr(1)))*gl(1)+dt*beta*fl(J+1)*(gr(1)+gl(1))-dt*alpha*gl(1);
%peridic BC for left moving of infected(j=J+1)
vl(J+1,n)=gl(J+1)+0.5*mu2*(gl(1)-gl(J+1))+dt*lambdav1*(0.5+0.5*tanh(1-bV*(gr(J+1)+gl(J+1))+dV*fl(J+1)))*gr(J+1)-dt*lambdav2*(0.5*+0.5*tanh(1-bV*(gr(J+1)+gl(J+1))+dV*fr(J+1)))*gl(J+1)+dt*beta*fl(J+1)*(gr(J+1)+gl(J+1))-dt*alpha*gl(J+1);
else
for j=2:J % interior nodes
%%%%%%%%%%%%%%%%%%%upwind of right-moving of susceptible
ur(j,n)=ur(j,n-1)-0.5*mu1*(ur(j,n-1)-ur(j-1,n-1))+dt*lambdau2*(0.5+0.5*tanh(1-b*(vr(j,n-1)+vl(j,n-1))+d*ur(j,n-1)))*ul(j,n-1)-dt*lambdau1*(0.5+0.5*tanh(1-b*(vr(j,n-1)+vl(j,n-1))+d*ul(j,n-1)))*ur(j,n-1)-dt*beta*ur(j,n-1)*(vr(j,n-1)+vl(j,n-1))+dt*0.5*alpha*(vr(j,n-1)+vl(j,n-1));
%%%%%%%%%%%%%%%%%%%upwind of right-moving of susceptible
ul(j,n)=ul(j,n-1)+0.5*mu1*(ul(j+1,n-1)-ul(j,n-1))+dt*lambdau1*(0.5+0.5*tanh(1-b*(vr(j,n-1)+vl(j,n-1))+d*ul(j,n-1)))*ur(j,n-1)-dt*lambdau2*(0.5*+0.5*tanh(1-b*(vr(j,n-1)+vl(j,n-1))+d*ur(j,n-1)))*ul(j,n-1)-dt*beta*ul(j,n-1)*(vr(j,n-1)+vl(j,n-1))+dt*0.5*alpha*(vr(j,n-1)+vl(j,n-1));
%%%%%%%%%%%%%%%%%%%upwindof right-moving of infected
vr(j,n)=vr(j,n-1)-0.5*mu2*(vr(j,n-1)-vr(j-1,n-1))+dt*lambdav2*(0.5+0.5*tanh(1-bV*(vr(j,n-1)+vl(j,n-1))+dV*ur(j,n-1)))*vl(j,n-1)-dt*lambdav1*(0.5+0.5*tanh(1-bV*(vr(j,n-1)+vl(j,n-1))+dV*ul(j,n-1)))*vr(j,n-1)+dt*beta*ur(j,n-1)*(vr(j,n-1)+vl(j,n-1))-dt*alpha*vr(j,n-1);
%%%%%%%%%%%%%%%%%%%upwind of left-moving of infected
vl(j,n)=vl(j,n-1)+0.5*mu2*(vl(j+1,n-1)-vl(j,n-1))+dt*lambdav1*(0.5+0.5*tanh(1-bV*(vr(j,n-1)+vl(j,n-1))+dV*ul(j,n-1)))*vr(j,n-1)-dt*lambdav2*(0.5*+0.5*tanh(1-bV*(vr(j,n-1)+vl(j,n-1))+dV*ur(j,n-1)))*vl(j,n-1)+dt*beta*ul(j,n-1)*(vr(j,n-1)+vl(j,n-1))-dt*alpha*vl(j,n-1);
end
%peridic BC for right moving of suscep(j=J+1,j+2=1)
ur(J+1,n)=ur(J+1,n-1)-0.5*mu1*(ur(J+1,n-1)-ur(J,n-1))+dt*lambdau2*(0.5+0.5*tanh(1-b*(vr(J+1,n-1)+vl(J+1,n-1))+d*ur(J+1,n-1)))*ul(J+1,n-1)-dt*lambdau1*(0.5+0.5*tanh(1-b*(vr(J+1,n-1)+vl(J+1,n-1))+d*ul(J+1,n-1)))*ur(J+1,n-1)-dt*beta*ur(J+1,n-1)*(vr(J+1,n-1)+vl(J+1,n-1))+dt*0.5*alpha*(vr(J+1,n-1)+vl(J+1,n-1));
%peridic BC for right moving of suscep(j=1,0=J)
ur(1,n)=ur(1,n-1)-0.5*mu1*(ur(1,n-1)-ur(J,n-1))+dt*lambdau2*(0.5+0.5*tanh(1-b*(vr(1,n-1)+vl(1,n-1))+d*ur(1,n-1)))*ul(1,n-1)-dt*lambdau1*(0.5+0.5*tanh(1-b*(vr(1,n-1)+vl(1,n-1))+d*ul(1,n-1)))*ur(1,n-1)-dt*beta*ur(1,n-1)*(vr(1,n-1)+vl(1,n-1))+dt*0.5*alpha*(vr(1,n-1)+vl(1,n-1));
%peridic BC for left moving of suscep (j=1)
ul(1,n)=ul(1,n-1)+0.5*mu1*(ul(2,n-1)-ul(1,n-1))+dt*lambdau1*(0.5+0.5*tanh(1-b*(vr(1,n-1)+vl(1,n-1))+d*ul(1,n-1)))*ur(1,n-1)-dt*lambdau2*(0.5*+0.5*tanh(1-b*(vr(1,n-1)+vl(1,n-1))+d*ur(1,n-1)))*ul(1,n-1)-dt*beta*ul(1,n-1)*(vr(1,n-1)+vl(1,n-1))+dt*0.5*alpha*(vr(1,n-1)+vl(1,n-1));
%peridic BC for left moving of suscep(j=J+1)
ul(J+1,n)=ul(J+1,n-1)+0.5*mu1*(ul(1,n-1)-ul(J+1,n-1))+dt*lambdau1*(0.5+0.5*tanh(1-b*(vr(J+1,n-1)+vl(J+1,n-1))+d*ul(J+1,n-1)))*ur(J+1,n-1)-dt*lambdau2*(0.5*+0.5*tanh(1-b*(vr(J+1,n-1)+vl(J+1,n-1))+d*ur(J+1,n-1)))*ul(J+1,n-1)-dt*beta*ul(J+1,n-1)*(vr(J+1,n-1)+vl(J+1,n-1))+dt*0.5*alpha*(vr(J+1,n-1)+vl(J+1,n-1));
%peridic BC for right moving of infected(j=J+1)
vr(J+1,n)=vr(J+1,n-1)-0.5*mu2*(vr(J+1,n-1)-vr(J,n-1))+dt*lambdav2*(0.5+0.5*tanh(1-bV*(vr(J+1,n-1)+vl(J+1,n-1))+dV*ur(J+1,n-1)))*vl(J+1,n-1)-dt*lambdav1*(0.5+0.5*tanh(1-bV*(vr(J+1,n-1)+vl(J+1,n-1))+dV*ul(J+1,n-1)))*vr(J+1,n-1)+dt*beta*ur(J+1,n-1)*(vr(J+1,n-1)+vl(J+1,n-1))-dt*alpha*vr(J+1,n-1);
%peridic BC for right moving of infected(j=1)
vr(1,n)=vr(1,n-1)-0.5*mu2*(vr(1,n-1)-vr(J,n-1))+dt*lambdav2*(0.5+0.5*tanh(1-bV*(vr(1,n-1)+vl(1,n-1))+dV*ur(1,n-1)))*vl(1,n-1)-dt*lambdav1*(0.5+0.5*tanh(1-bV*(vr(1,n-1)+vl(1,n-1))+dV*ul(1,n-1)))*vr(1,n-1)+dt*beta*ur(1,n-1)*(vr(1,n-1)+vl(1,n-1))-dt*alpha*vr(1,n-1);
%peridic BC for left moving of infected(j=1)
vl(1,n)=vl(1,n-1)+0.5*mu2*(vl(2,n-1)-vl(1,n-1))+dt*lambdav1*(0.5+0.5*tanh(1-bV*(vr(1,n-1)+vl(1,n-1))+dV*ul(1,n-1)))*vr(1,n-1)-dt*lambdav2*(0.5*+0.5*tanh(1-bV*(vr(1,n-1)+vl(1,n-1))+dV*ur(1,n-1)))*vl(1,n-1)+dt*beta*ul(1,n-1)*(vr(1,n-1)+vl(1,n-1))-dt*alpha*vl(1,n-1);
%peridic BC for left moving of infected(j=J+1)
vl(J+1,n)=vl(J+1,n-1)+0.5*mu2*(vl(1,n-1)-vl(J+1,n-1))+dt*lambdav1*(0.5+0.5*tanh(1-bV*(vr(J+1,n-1)+vl(J+1,n-1))+dV*ul(J+1,n-1)))*vr(J+1,n-1)-dt*lambdav2*(0.5*+0.5*tanh(1-bV*(vr(J+1,n-1)+vl(J+1,n-1))+dV*ur(J+1,n-1)))*vl(J+1,n-1)+dt*beta*ul(J+1,n-1)*(vr(J+1,n-1)+vl(J+1,n-1))-dt*alpha*vl(J+1,n-1);
end
%calculate the analytical solution
for j=1:J+1
xj=xl+(j-1)*dx;
u_ex(j,n)=exp(-c*(xj-au*t-0.5)^2);
end
end
figure
ss=surf(T,X,ur+ul);
set(ss,'edgecolor','none');
xlabel('t','FontSize',28);
ylabel('x','FontSize',28);
title('u^++u^-','FontSize',28);
set(gca,'Fontsize',28);
view(2)
%%%%%%%%%%%%
figure
ss=surf(T,X,vr+vl);
set(ss,'edgecolor','none');
xlabel('t','FontSize',28);
ylabel('x','FontSize',28);
title('v^++v^-','FontSize',28);
set(gca,'Fontsize',28);
view(2)
figure
ss=surf(T,X,ur);
set(ss,'edgecolor','none');
xlabel('t','FontSize',28);
ylabel('x','FontSize',28);
title('u^+','FontSize',28);
set(gca,'Fontsize',28);
figure
ss=surf(T,X,vr);
set(ss,'edgecolor','none');
xlabel('t','FontSize',28);
ylabel('x','FontSize',28);
title('v^+','FontSize',28);
set(gca,'Fontsize',28);
figure
ss=surf(T,X,ul);
set(ss,'edgecolor','none');
xlabel('t','FontSize',28);
ylabel('x','FontSize',28);
title('u^-','FontSize',28);
set(gca,'Fontsize',28);
figure
ss=surf(T,X,vl);
set(ss,'edgecolor','none');
xlabel('t','FontSize',28);
ylabel('x','FontSize',28);
title('v^-','FontSize',28);
set(gca,'Fontsize',28);
figure
ss=surf(T,X,vr+vl);
set(ss,'edgecolor','none');
xlabel('t','FontSize',28);
ylabel('x','FontSize',28);
title('v^++v^-','FontSize',28);
set(gca,'Fontsize',28);
figure
ss=surf(T,X,ur+ul);
set(ss,'edgecolor','none');
xlabel('t','FontSize',28);
ylabel('x','FontSize',28);
title('u^++u^-','FontSize',28);
set(gca,'Fontsize',28);

回答 (1 件)

Akshat Dalal
Akshat Dalal 2023 年 10 月 4 日
編集済み: Akshat Dalal 2023 年 10 月 8 日
Hi lulu,
I understand you are facing some error while implementing the trapezoidal rule for integration. The error seems to be happening in the following line of code:
y= b*K*v(x+s)+d*K*ur(x+s);
Here, the variable ‘x’ is an array with non-integral values, while 's' is a constant integer. Thus, the array ‘x + s’ will contain some non-integral values which cannot be used as array indices and throws an error.

カテゴリ

Help Center および File ExchangeSpline Postprocessing についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by