matlab program in 3- piont guassian quadrature to evaluate integral f(x)= sin(x/10)

4 ビュー (過去 30 日間)
Rikesh
Rikesh 2022 年 8 月 10 日
編集済み: Walter Roberson 2025 年 1 月 20 日
n/a
  1 件のコメント
Mahesh
Mahesh 2024 年 12 月 9 日
Consider the following integral: R 3 0 xe2x dx Write all the relevant commands on a MATLAB script to compute the value of the above integral using two-point Gaussian quadrature rule

サインインしてコメントする。

回答 (1 件)

Avni Agrawal
Avni Agrawal 2025 年 1 月 20 日
編集済み: Walter Roberson 2025 年 1 月 20 日
Hi Rikesh,
I understand that you are trying to evaluate the integral of using the 3-point Gaussian quadrature method.
Here is step by step explanation on how to do this:
1. Define the Function and Interval:
f = @(x) sin(x/10);
a = 0; % Lower limit
b = pi; % Upper limit
2. Gaussian Quadrature Points and Weights:
x = [-sqrt(3/5), 0, sqrt(3/5)];
w = [5/9, 8/9, 5/9];
3. Map Points and Evaluate Function:
x_mapped = 0.5 * ((b - a) * x + a + b);
f_values = f(x_mapped);
4. Compute the Integral:
integral = ((b - a) / 2) * sum(w .* f_values);
disp(integral);
This approach uses Gaussian quadrature to accurately approximate the integral over the interval \([a, b]\).
I hope this helps!

カテゴリ

Help Center および File ExchangeNumerical Integration and Differential Equations についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by