Using Euler method to solve second order ODE

7 ビュー (過去 30 日間)
Yuval Levy
Yuval Levy 2022 年 7 月 19 日
編集済み: Torsten 2022 年 7 月 20 日
Hello,
I'm trying to write a program that usese Euler method to solve second order ODE. (represnts the movment of a package hanging from the roof with a spring).
I eventually will need to solve a more complex one, but as long as the simple one doesn't work, I have no reason to continue.
My ODE is: y'' = -25*y + 440.19 ;
For a reason I don't understand, my plot is not converging with the calculated solution for the ODE.
The code and the plot I'm getting are in the pictures. (the expected result was done with Runge-Kutta but since I can't manege to use it so solve a second order ODE I'm trying to understand the Euler method).
Zp_dotaim = y'' ; Zp_dot = y' ; Zp = y
Initial values : y'(0) = 0 ; y(0) = 18 ;
Thank you!
Zp_dot = zeros(1,1000) ; % prealocating vectors [m/sec]
Zp = zeros(1,1000) ; % prealocating vectors [m]
Zp(1) = 18 ; % initial condition
t = linspace(1,100,1000) ; % creating time vector [sec]
h = 0.01 ; % time step
for i = 1:999
% Zp_dotaim =@(Zp) 25*((2/(20-Zp))-1)*(Zp-20)-9.81 ;
Zp_dotaim =@(Zp) -25*Zp + 440.19 ;
Zp_dot(i+1) = Zp_dot(i) + h*Zp_dotaim(Zp(i)) ;
Zp(i+1) = Zp(i) + h*Zp_dot(i) ;
end
exact = (0.3924*cos(5*t)+17.6076);
plot(t,Zp,'r',t,exact,'b--') ; title('Zp(t)') ; grid on ;
xlabel('t [sec]') ; ylabel('Zp(t) [m]') ;

採用された回答

Sam Chak
Sam Chak 2022 年 7 月 19 日
編集済み: Sam Chak 2022 年 7 月 19 日
Some minor issues. If you use Euler's method and you want to simulate for a relatively long duration, then you need to make the time step smaller. Also, the time vector begins from , because the initial value from the exact solution (cosine) is .
Zp_dot = zeros(1, 100001); % prealocating vectors [m/sec]
Zp = zeros(1, 100001); % prealocating vectors [m]
Zp(1) = 18; % initial condition
t = linspace(0, 10, 100001); % creating time vector [sec]
h = 1e-4; % time step
for i = 1:100000
Zp_dotaim = @(Zp) - 25*Zp + 440.19 ;
Zp_dot(i+1) = Zp_dot(i) + h*Zp_dotaim(Zp(i)) ;
Zp(i+1) = Zp(i) + h*Zp_dot(i) ;
end
exact = (0.3924*cos(5*t)+17.6076);
plot(t, Zp, 'r', t, exact,'b--');
title('Zp(t)');
grid on;
xlabel('t [sec]');
ylabel('Zp(t) [m]') ;
  6 件のコメント
Yuval Levy
Yuval Levy 2022 年 7 月 20 日
@Torsten Thank's alot! it worked. still don't really know how to figure out the h values and vector sizes, but you answed my question.
Thank you again.
Torsten
Torsten 2022 年 7 月 20 日
編集済み: Torsten 2022 年 7 月 20 日
still don't really know how to figure out the h values and vector sizes, but you answed my question.
I answered your question about the h value :-).
And the sizes of the vectors must be 1 x [(tend-tstart)/h + 1] in order that the solution and derivatives for all requested times can be saved within them.

サインインしてコメントする。

その他の回答 (1 件)

Tom Brenner
Tom Brenner 2022 年 7 月 19 日
You can't solve a second order differential equation with a single initial condition. You must have two. In this case, you assume that the first value of Zp_dot is zero (the vector was initialized with zeros) and add to this zero the approximate value of h times the second derivative.
You should determine how the exact solution 0.3924*cos(5*t)+17.6076 was arrived at (i.e., what the two initial conditions should be), and then correct your code.
  1 件のコメント
Yuval Levy
Yuval Levy 2022 年 7 月 19 日
編集済み: Yuval Levy 2022 年 7 月 19 日
Thanks for you answer Tom.
You are right, my bad. The initial value for Zp_dot is actually zero, I just forgot to write it in the explenation.
So unfortunately, that's not the origin of my problem... I have edited the post.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeNumeric Solvers についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by