Compute Probability of a Multivariate Normal Distribution over Polytope

4 ビュー (過去 30 日間)
Michael Fink
Michael Fink 2022 年 6 月 29 日
コメント済み: Torsten 2022 年 7 月 4 日
I have a Multivariate Normal Distribution with the mean vector and the covariance matrix given as
Now, I want to compute the probability that a realization of lies in a given polytopic set of the form
where the matrix and the vector describes m half-spaces and therefore a convex set.
The probability which I want to compute is given as
How can I compute/approximate this integration numerically in MATLAB for a given mean μ, a given covariance Σ, and a given set 𝒫. In my problem, the variable x has around 10 to 100 dimensions.
Edit: ->
  4 件のコメント
Torsten
Torsten 2022 年 6 月 29 日
編集済み: Torsten 2022 年 7 月 1 日
It could be quite time-consuming, but maybe Monte-Carlo integration is an option:
Michael Fink
Michael Fink 2022 年 6 月 30 日
Thank you @Torsten for the idea

サインインしてコメントする。

回答 (1 件)

Paul
Paul 2022 年 6 月 30 日
Hi Michael,
If A is nonsingular, perhaps a change of coordinates will work
% z = A*x
muz = A*mux;
Sigmaz = A*Sigmax*A.';
ProbAxLTb = mvncdf(-inf+b,b,muz,Sigmaz);
See the doc page for mvncdf for examples, info, options, etc.
  6 件のコメント
Michael Fink
Michael Fink 2022 年 7 月 4 日
Hello Paul,
yes, exactly, this is the probability. But in my case, the Polytope (i.e. matrix A and vector b) is given/is deterministic and not random.
For example an unitbox for n=2 (Vertecise: (1,1),(-1,1),(1,-1),(-1,1) ) would be given as
A = [eye(2);-eye(2)]
A = 4×2
1 0 0 1 -1 0 0 -1
b = ones(4,1)
b = 4×1
1 1 1 1
Torsten
Torsten 2022 年 7 月 4 日
It was only an example.
Of course, you can directly use your values for sigma, mu, A and b in Paul's code instead of the randomly created.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeNumerical Integration and Differentiation についてさらに検索

製品


リリース

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by