ディープラーニングに使用する画像のサイズについて

11 ビュー (過去 30 日間)
大空
大空 2022 年 6 月 25 日
編集済み: Kojiro Saito 2022 年 6 月 26 日
ネットから拾ってきた画像を学習さえたいのですが
%% 画像読み込み
imds = imageDatastore('catdog','IncludeSubfolders',true,'LabelSource','foldernames');
labelCount = countEachLabel(imds)
%% データで振り分ける
rateTrainFiles = 0.6;
[imdsTrain,imdsValidation] = splitEachLabel(imds,rateTrainFiles,'randomize');
%%画像サイズ
layers = [256,256,3];
aug_imdsTrain = augmentedImageDatastore(layers,imdsTrain);
aug_imdsValidation = augmentedImageDatastore(layers,imdsValidation);
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.01,...
'MaxEpochs',4,...
'Shuffle','every-epoch',...
'ValidationData',imdsValidation,...
'VerboseFrequency',30,...
'Verbose',false, ...
'Plots','training-progress');
net=trainNetwork(imdsTrain,layers,options);
これでエラーが学習イメージサイズが違いますってでてしまいました
どこを直せばよろしいでしょうか?

採用された回答

Atsushi Ueno
Atsushi Ueno 2022 年 6 月 25 日
aug_imdsTrain = augmentedImageDatastore([256,256,3],imdsTrain);
は良いのですが、
net=trainNetwork(imdsTrain,[256,256,3],options);
は求められているネットワーク層の情報が与えられていません。2番目の引数layersは、学習させるニューラルネットワークのネットワーク層を指定する為の引数で、画像サイズではありません。
>どこを直せばよろしいでしょうか?
例えば以下の様にすればエラーは解消すると思います。
layers_for_trainNetwork = [imageInputLayer([28 28 1]) convolution2dLayer(5,20) reluLayer maxPooling2dLayer(2,'Stride',2) fullyConnectedLayer(10) softmaxLayer classificationLayer];
options = ...% optionsは修正不要
net=trainNetwork(imdsTrain,layers_for_trainNetwork,options);
  2 件のコメント
大空
大空 2022 年 6 月 25 日
layers_for_trainNetwork = [imageInputLayer([28 28 1]) convolution2dLayer(5,20) reluLayer maxPooling2dLayer(2,'Stride',2) fullyConnectedLayer(10) softmaxLayer classificationLayer];
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.01,...
'MaxEpochs',4,...
'Shuffle','every-epoch',...
'ValidationData',imdsValidation,...
'VerboseFrequency',30,...
'Verbose',false, ...
'Plots','training-progress');
net=trainNetwork(imdsTrain,layers_for_trainNetwork,options);
こちらの文書に直しても使い方によるエラーtrainNetwork学習イメージのサイズ800×1200×3ですが入力層にはサイズ28×28×1のイメージが必要ですと出てしまいます
Atsushi Ueno
Atsushi Ueno 2022 年 6 月 25 日
すいません。それでしたら下記の様にすれば良いです。
layers_for_trainNetwork = [imageInputLayer([800 1200 3]) convolution2dLayer(5,20) reluLayer maxPooling2dLayer(2,'Stride',2) fullyConnectedLayer(10) softmaxLayer classificationLayer];

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File Exchangeイメージを使用した深層学習 についてさらに検索

タグ

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!