I want to plot region for z numbers that satisfy D<10^-4.

2 ビュー (過去 30 日間)
Leia
Leia 2022 年 6 月 8 日
コメント済み: Torsten 2022 年 6 月 10 日
How do I plot the region showing z=x+iy values that make the difference between a polynomial and an exponential function less than 10^-4?
For example;
syms z
[x,y]=meshgrid(-6:.1:2,-6:.1:6);
z=x+1i*y;
R = - 0.0000000000000042786173933199698996786792332228*z.^16 + 0.000000000000093679201874795131075154866430805*z.^15 ...
- 0.0000000000018102462775238750488561630646573*z.^14 + 0.000000000070607888835529581094992975687635*z.^13 ...
- 0.00000000047430380749604348847250198255397*z.^12 + 0.0000000060302178555555310479780219749732*z.^11 ...
- 0.00000014850754796722791834393401507891*z.^10 - 0.0000011975088237244406931082370289037*z.^9 ...
- 0.00000486020688657407415163842024264*z.^8 + 0.000027465820312500018146735337769556*z.^7 ...
+ 0.0010023328993055556912781216101668*z.^6 + 0.0080891927083333337897961540664676*z.^5 ...
+ 0.041666666666666667576168711195926*z.^4 + 0.16666666666666666756898545265065*z.^3 + 0.5*z.^2 + 1.0*z + 1.0;
T = exp(z);
D = R-T;
I want to plot region for z numbers that satisfy D<10^-4.
How can I do that? I would be appreciate if you help.

採用された回答

Torsten
Torsten 2022 年 6 月 8 日
編集済み: Torsten 2022 年 6 月 8 日
R1 = @(x,y)- 0.0000000000000042786173933199698996786792332228*(x+1i*y).^16 + 0.000000000000093679201874795131075154866430805*(x+1i*y).^15 ...
- 0.0000000000018102462775238750488561630646573*(x+1i*y).^14 + 0.000000000070607888835529581094992975687635*(x+1i*y).^13 ...
- 0.00000000047430380749604348847250198255397*(x+1i*y).^12 + 0.0000000060302178555555310479780219749732*(x+1i*y).^11 ...
- 0.00000014850754796722791834393401507891*(x+1i*y).^10 - 0.0000011975088237244406931082370289037*(x+1i*y).^9 ...
- 0.00000486020688657407415163842024264*(x+1i*y).^8 + 0.000027465820312500018146735337769556*(x+1i*y).^7 ...
+ 0.0010023328993055556912781216101668*(x+1i*y).^6 + 0.0080891927083333337897961540664676*(x+1i*y).^5 ...
+ 0.041666666666666667576168711195926*(x+1i*y).^4 + 0.16666666666666666756898545265065*(x+1i*y).^3 + 0.5*(x+1i*y).^2 + 1.0*(x+1i*y) + 1.0;
R2 = @(x,y) sum((x+1i*y).^(0:16)./factorial(0:16));
T = @(x,y) exp(x+1i*y);
fun1 = @(x,y)norm(R1(x,y)-T(x,y))-1e-4;
fun2 = @(x,y)norm(R2(x,y)-T(x,y))-1e-4;
fimplicit(fun1)
Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your function to return an output with the same size and shape as the input arguments.
hold on
fimplicit(fun2)
Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your function to return an output with the same size and shape as the input arguments.
  4 件のコメント
Leia
Leia 2022 年 6 月 10 日
This polynomial have found as an approximate solution to a differential equation by a spectral numerical method.
Torsten
Torsten 2022 年 6 月 10 日
And the differential equation has exp(z) as solution ?

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeCalculus についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by