Three nonlinear equation with initial guess

6 ビュー (過去 30 日間)
Nihal Yilmaz
Nihal Yilmaz 2022 年 6 月 6 日
コメント済み: MOSLI KARIM 2022 年 8 月 12 日
How can I solve this question? Please help me, Thank you.
equations are
-0.06*(x^2)-1.06*(z^2)+3.18*x+3.18*z+1.59*y-2.06*x*y-3.12*x*z-2.385-1.06*y*z=0
2.63*(x^2)-1.63*(y^2)-2.63*(z^2)-3.945*x+3.945*y+3.945*z-4.76*y*z=0
z-7.5*y+5x*y+5*y*z=0
initial guess x=y=z=0
x=?
y=?
z=?
  1 件のコメント
MOSLI KARIM
MOSLI KARIM 2022 年 8 月 12 日
function bvp_prb14
tspan=[0; 15];
y0=[0;0;0];
[t,x]=ode45(@fct,tspan,y0)
X=x(:,1) %%% x solution
Y=x(:,2) %%% YOUR Y
Z=x(:,3) %%%YOUR Z
table(X,Y,Z)
function yp=fct(t,x)
yp=[-0.06*(x(1)^2)-1.06*(x(3)^2)+3.18*x(1)+3.18*x(3)+1.59*x(2)-2.06*x(1)*x(2)-3.12*x(1)*x(3)-2.385-1.06*x(2)*x(3);
2.63*(x(1)^2)-1.63*(x(2)^2)-2.63*(x(3)^2)-3.945*x(1)+3.945*x(2)+3.945*x(3)-4.76*x(2)*x(3);
x(3)-7.5*x(2)+5*x(1)*x(2)+5*x(2)*x(3)];
end
end

サインインしてコメントする。

回答 (3 件)

Torsten
Torsten 2022 年 6 月 6 日
fun = @(x,y,z)[-0.06*(x^2)-1.06*(z^2)+3.18*x+3.18*z+1.59*y-2.06*x*y-3.12*x*z-2.385-1.06*y*z;2.63*(x^2)-1.63*(y^2)-2.63*(z^2)-3.945*x+3.945*y+3.945*z-4.76*y*z;z-7.5*y+5*x*y+5*y*z];
u0=[0; 0; 0];
[sol,fval]=fsolve(@(u)fun(u(1),u(2),u(3)),u0)
Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient.
sol = 3×1
0.7079 0.1909 0.3868
fval = 3×1
1.0e-10 * -0.0873 0.4509 0.4931

Bjorn Gustavsson
Bjorn Gustavsson 2022 年 6 月 6 日
Have a look at the help and documentation of fsolve. That should be the function for this task
HTH

Walter Roberson
Walter Roberson 2022 年 6 月 6 日
with the symbolic toolbox you can find 8 solutions including a complex conjugate pair. The real solutions are approximately
0.7079 0.1909 0.3868
0.0375 0.5366 1.0654
0.9235 -0.3927 1.1749
0.6229 -0.5919 1.3247
-0.4412 -3.4575 2.0604
0.0323 -0.6798 2.0795
As you start from 0,0,0 the implication is that negative components are valid

カテゴリ

Help Center および File ExchangeSystems of Nonlinear Equations についてさらに検索

製品


リリース

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by