can you please convert python code to matlab code for image processing ?

2 ビュー (過去 30 日間)
Muskan  Joshi
Muskan Joshi 2022 年 5 月 30 日
回答済み: Sivylla Paraskevopoulou 2022 年 5 月 31 日
# -*- coding: utf-8 -*- """
""" #import required libraries import numpy as np from matplotlib import pyplot as plt from sklearn.model_selection import train_test_split from keras.utils import np_utils from keras.layers import Conv2D, Input, Dropout from keras.models import Model from keras.layers.pooling import MaxPooling2D from keras.layers.core import Flatten, Dense from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint import pickle import cv2 import time import os #reading images def load_images(folder): images = [] for filename in os.listdir(folder): img = cv2.imread(os.path.join(folder, filename)) if img is not None: img = cv2.resize(img, (80,80)) images.append(img) return np.array(images) #storing images benign = load_images('./lung_colon_image_set/lung_image_sets/lung_n/') mal_aca = load_images('./lung_colon_image_set/lung_image_sets/lung_aca/') mal_scc = load_images('./lung_colon_image_set/lung_image_sets/lung_scc/') #images shape after resizing print(f"Images shape: {benign[0].shape}.") indices = [0, 40, 2300] plt.figure(1, figsize=(15,5)) plt.grid(None) for n, idx in enumerate(indices): plt.subplot(n+1, 3, 1) plt.imshow(benign[idx]) plt.title('benign') plt.subplot(n+1, 3, 2) plt.imshow(mal_aca[idx]) plt.title('malignant aca') plt.subplot(n+1, 3, 3) plt.imshow(mal_scc[idx]) plt.title('malignant scc') #plotting sample input image plt.show() #concatenate images and create labels samples = np.concatenate((benign, mal_aca, mal_scc)) labels = np.array(benign.shape[0] * [0] + mal_aca.shape[0] * [1] + mal_scc.shape[0] * [2]) #shuffling randomly indices = np.arange(samples.shape[0]) np.random.shuffle(indices) samples = samples[indices] labels = labels[indices] # normalize pictures samples = samples.astype('float32') / 255 #splitting data into train and test X_train, X_test, y_train, y_test = train_test_split(samples, labels, test_size = 0.2) X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, test_size = 0.5) Y_train = np_utils.to_categorical(y_train, 3) Y_val = np_utils.to_categorical(y_val, 3) Y_test = np_utils.to_categorical(y_test, 3) #creating model def base_model(input_shape=(80,80,3), classes=3): inputs = Input(shape=input_shape) X = Conv2D(32, 3, 3, activation='relu')(inputs) X = MaxPooling2D(pool_size=(2,2))(X) X = Conv2D(64, 3, 3, activation='relu')(X) X = MaxPooling2D(pool_size=(2,2))(X) X = Dropout(0.2)(X) X = Conv2D(128, 3, 3, activation='relu', padding='same')(X) X = MaxPooling2D(pool_size=(2,2), padding='same')(X) X = Dropout(0.2)(X) X = Flatten()(X) X = Dense(256, activation='relu')(X) outputs = Dense(classes, activation='softmax')(X) model = Model(inputs, outputs, name='DetectionModel') return model model = base_model(input_shape=(80,80,3), classes=3) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics='accuracy') checkpoint = ModelCheckpoint("modelsave.h5", monitor='val_accuracy', verbose=1, save_best_only=True, mode='max') history = model.fit(X_train, Y_train, batch_size=64, epochs=35, validation_data=(X_val, Y_val), callbacks=[checkpoint]) #plotting loss and accuracy graph plt.style.use('seaborn') plt.figure(figsize=(16,7)) plt.subplot(1,2,1) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss', fontsize=16) plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['train', 'val']) plt.subplot(1,2,2) plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model accuracy', fontsize=16) plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['train', 'val']) plt.show() from sklearn.metrics import confusion_matrix import seaborn as sn y_pred_test = model.predict(X_test, verbose=1) y_pred_train = model.predict(X_train, verbose=1) y_pred_test = np.argmax(y_pred_test, axis=1) y_pred_train = np.argmax(y_pred_train, axis=1) #evaluating model on test dataset score_test = model.evaluate(X_test, Y_test) print(f"Train accuracy: {history.history['accuracy'][-1]:.3f}") print(f"Validation accuracy: {history.history['val_accuracy'][-1]:.3f}") print(f"Test accuracy: {score_test[1]:.3f}") label_names = ['benign', 'mal_aca', 'mal_scc'] #confusion matrix confmat = confusion_matrix(y_train, y_pred_train) sn.heatmap(confmat, annot=True, cmap='Blues', cbar=False, xticklabels=label_names, yticklabels=label_names)

回答 (1 件)

Sivylla Paraskevopoulou
Sivylla Paraskevopoulou 2022 年 5 月 31 日
Save the TensorFlow model that you created in the SavedModel format, and then you can import the TensorFlow model into MATLAB by using the importTensorFlowNetworkNetwork function.
For an example on how to compare the image classification results between your TensorFlow model and the imported MATLAB network, see Inference Comparison Between TensorFlow and Imported Networks for Image Classification.

カテゴリ

Help Center および File ExchangePretrained Networks from External Platforms についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by