Calculate convolution of two given continuous signals in matlab
153 ビュー (過去 30 日間)
古いコメントを表示
If I have two continuous signals ,f1(t) = g10(t) and f2(t) = (e^-t)*u(t). How can I calculate the convolution and plot the graph for that? N:B: here g10 means the width of rectangular is 10(eg: -5 to 5)
0 件のコメント
採用された回答
Paul
2022 年 6 月 5 日
Closed form solution using symbolic math
syms t tau real
f1(t) = rectangularPulse(-5,5,t);
f2(t) = exp(-t)*heaviside(t);
y1(t) = int(f1(tau)*f2(t-tau),tau,-5,t)
figure;
fplot(y1(t),[-10 10])
hold on
Numerical solution using integral()
f1 = @(t) abs(t) <= 5;
f2 = @(t) exp(-t).*(t>=0);
y2 = @(t) integral(@(tau)(f1(tau).*f2(t-tau)),-5,t);
for tval = -7:2:10
plot(tval,y2(tval),'rx')
end
Numerical solution using conv(). Note that we have to settle for a vaue of t where we are willing to accept f2(t) = 0
dt = 0.1;
tval = -5:dt:15;
y3 = conv(f1(tval),f2(tval))*dt;
conv() assumes that the sequences start at t = 0, so we have to shift our time reference left by 5. Make dt smaller to improve the convolution sum approximation.
plot(tval-5,y3(1:numel(tval)),'ko')
legend('Closed Form','integral()','conv()','Location','NorthWest')
参考
カテゴリ
Help Center および File Exchange で Symbolic Math Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!