How i implement Adams Predictor-Corrector Method from general code ?
34 ビュー (過去 30 日間)
古いコメントを表示
Hazel Can
2022 年 5 月 25 日
編集済み: Lateef Adewale Kareem
2022 年 5 月 30 日
Below is the Adams predictor-corrector formula and general code. How can I adapt this code to the above question? Can you please help?
%------------------------------------------------------
% 2-step Predictor-Corrector
% [T,Y]=dd2(f,definition,y,h); definition=[t1,tfinal]
%------------------------------------------------------
function [T,Y]=dd2(f,definition,Y1,h)
t1=definition(1);tfinal=definition(2);T=t1;Y=Y1;
t2=t1+h;
definition=[t1,t2];
[T,Y]=rk2(f,definition,Y1,h) ;
Y2=Y(2);
while t2 <tfinal
t3=t2+h;
P=Y2+h*(3/2*f(t2,Y2)-1/2*f(t1,Y1));
Y3=Y2+h/12*(5* f(t3,P)+8*f(t2,Y2)-f(t1,Y1));
Y1=Y2; Y2=Y3;t1=t2;t2=t3;
T=[T;t3];Y=[Y;Y3];
end
%
%----------------------------------------------
2 件のコメント
Torsten
2022 年 5 月 27 日
You know the correct result of your differential equation.
If you plot Y against T in the calling program and compare the plot with the analytical solution, both should be approximately the same.
If yes, your code is (most probably) correct, if not, it's not.
採用された回答
Lateef Adewale Kareem
2022 年 5 月 29 日
編集済み: Lateef Adewale Kareem
2022 年 5 月 30 日
clc; clear all;
h = 0.01;
mu = 20;
f_m = @(t,y) mu*(y-cos(t))-sin(t);
exact = @(t) exp(mu*t)+cos(t);
[t,y_m] = dd2(f_m,[0, 1],exact(0), exact(h), h);
plot(t, exact(t)); hold
plot(t,y_m);
%plot(t,y,'-o');
legend('Exact Solution','Adams predictor-corrector formula')
xlabel('t')
ylabel('y')
title('When h = 0.01 and µ=20')
%------------------------------------------------------
% 2-step Predictor-Corrector
% [T,Y]=dd2(f,definition,y,h); definition=[t1,tfinal]
%------------------------------------------------------
function [T,Y] = dd2(f, definition, Y1, Y2, h)
t1 = definition(1); tfinal = definition(2); t = t1:h:tfinal;
T = t(1:2)'; Y = [Y1;Y2];
for i = 2:numel(t)-1
P = Y(i) + h/2*(3*f(t(i),Y(i))-f(t(i-1),Y(i-1)));
Y(i+1) = Y(i) + h/12*(5*f(t(i+1), P) + 8*f(t(i),Y(i)) - f(t(i-1),Y(i-1)));
T=[T;t(i+1)];
end
end
%
4 件のコメント
Torsten
2022 年 5 月 30 日
As far as I read in your assignment, you should use the exact solution for y1. So neither rk2 nor rk4 is needed.
Lateef Adewale Kareem
2022 年 5 月 30 日
編集済み: Lateef Adewale Kareem
2022 年 5 月 30 日
yeah. he should have sent it in. I have modified the solution to use the exact solution at h
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Loops and Conditional Statements についてさらに検索
製品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!