Using Implicit Euler Method with Newton-Raphson method
72 ビュー (過去 30 日間)
古いコメントを表示
So I'm following this algorithm to write a code on implicit euler method

and here is my attempt
function y = imp_euler(f,f_y,t0,T,y0,h,tol,N)
t = t0:h:T;
n = length(t);
y = zeros(n,1);
y(1) = y0;
for k = 1:n-1
g = @(z) z - y(k) - h*f(t(k+1),z);
gp = @(z) 1 - h*f_y(t(k+1),z) ;
y(k+1) = newton(f,f_y,y(k),tol,N);
end
end
where
function sol=newton(f,fp,x0,tol,N)
i=0;
sol = zeros(N,2);
fc=abs(f(x0));
while (fc>tol)
xc = x0 - (f(x0)/fp(x0));
fc=abs(f(xc));
x0 = xc;
i=i+1;
sol(i,:) = [i; x0];
if (i>N)
fprintf('Method failed after %d iterations. \n',N);
break
end
end
sol = sol(any(sol,2),:);
end
Unfortunately, my code does not work for some reason. Could anybody guide me on how to code this? Comments are appreciated.
7 件のコメント
採用された回答
Torsten
2022 年 5 月 11 日
編集済み: Torsten
2022 年 5 月 11 日
f = @(t,y) -20*t*y^2;
f_y = @(t,y) -40*t*y;
t0 = 0;
T = 1;
y0 = 1;
h = 0.01;
tol = 1e-8;
N = 100;
y = imp_euler(f,f_y,t0,T,y0,h,tol,N)
plot(t0:h:T,y)
hold on
plot(t0:h:T,1./(1+10*(t0:h:T).^2))
function y = imp_euler(f,f_y,t0,T,y0,h,tol,N)
t = t0:h:T;
n = length(t);
y = zeros(n,1);
y(1) = y0;
for k = 1:n-1
g = @(z) z - y(k) - h*f(t(k+1),z);
gp = @(z) 1 - h*f_y(t(k+1),z) ;
disp('Vor Newton call.')
y(k+1) = newton(g,gp,y(k),tol,N);
disp('nach Newton Call.')
end
end
function sol=newton(f,fp,x0,tol,N)
i=0;
sol = zeros(N,2);
fc=abs(f(x0));
while fc > tol
xc = x0 - (f(x0)/fp(x0));
fc=abs(f(xc));
x0 = xc;
i=i+1;
if (i>N)
fprintf('Method failed after %d iterations. \n',N);
break
end
end
sol = x0;
end
1 件のコメント
Haseeb Hashim
2022 年 11 月 20 日
@Torsten Man thanks. You are a legend. I was looking for this code for so long
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!