This code shows the FIR filter magnitude response with the normalized frequency from 0 to pi, how i can make mirroring of this magnitude response to start from -pi to pi ??

5 ビュー (過去 30 日間)
This code shows the FIR filter magnitude response with the normalized frequency through interval from [0 to pi] in a figure, my question is how i can make mirroring of this magnitude response to start through interval from [-pi to pi] ??
clc;
close all;
clear all;
n1= 15; %order
Fs= 100; %sampling frequency
fc= Fs/4; %cutoff frequency
%nyq_f= Fs/2; %normalize cutoff frequency wrt to nyquist freq
%wn= fc/nyq_f; %normalized fc
wc= (2*pi*fc)/Fs;
wn= wc/pi;
%window= hamming(n+1)
H1= fir1(n1,wn,hamming(n1+1));
h1= freqz(H1); %frequency response
f1= linspace(0,Fs/2,512);
w1= (2*pi*f1)/Fs;
w= w1/pi;
plot (w, abs(h1))
axis([0 1 -0.1 1.1])

回答 (1 件)

Mathieu NOE
Mathieu NOE 2022 年 5 月 9 日
hello
here you are (nothing fancy !)
clc;
close all;
clear all;
n1= 15; %order
Fs= 100; %sampling frequency
fc= Fs/4; %cutoff frequency
%nyq_f= Fs/2; %normalize cutoff frequency wrt to nyquist freq
%wn= fc/nyq_f; %normalized fc
wc= (2*pi*fc)/Fs;
wn= wc/pi;
%window= hamming(n+1)
H1= fir1(n1,wn,hamming(n1+1));
h1= freqz(H1); %frequency response
f1= linspace(0,Fs/2,512);
w1= (2*pi*f1)/Fs;
w= w1/pi;
h1_mag = abs(h1);
plot (w, h1_mag)
axis([0 1 -0.1 1.1])
% This code shows the FIR filter magnitude response with the normalized frequency through interval from [0 to pi] in a figure,
% my question is how i can make mirroring of this magnitude response to start through interval from [-pi to pi] ??
w_flip = flip(w);
h1_mag_flip = flip(h1_mag);
w_all = [-w_flip(1:end-1) w];
h1_mag_all = [h1_mag_flip(1:end-1); h1_mag];
plot (w_all, h1_mag_all)
axis([-1 1 -0.1 1.1])

カテゴリ

Help Center および File ExchangeDigital and Analog Filters についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by