How to extract time series averaged over a region?

2 ビュー (過去 30 日間)
Keegan Carvalho
Keegan Carvalho 2022 年 5 月 1 日
コメント済み: Keegan Carvalho 2022 年 5 月 18 日
Hi All,
I've been working on this monthly chlorophyll dataset where the "chl variable" has the dimensions 489x221x1X24 (lon x lat x depth x time). So basically the 4th dimensions has 24 chlorophyll values corresponding to 24 months from Jan'20 to Dec'21. Now I wanted to extract the chlorophyll values for 24 months of the entire region into a table; in that way I have a time series for further analysis.
lon=ncread("chl2020.nc","longitude");lat=ncread("chl2020.nc","latitude");
chl=ncread("chl2020.nc","chl");
this=squeeze(chl);
% removes the 3rd dimension
latrange= -25:0.25:30;
lonrange= 32:0.25:120;
% Indexing the region
for i=1:length(latrange)
latindex(i)= find(lat==latrange(i));
end
for i=1:length(lonrange)
longindex(i)= find(lon==lonrange(i));
end
%Finding the values for January - 2020
newchl = this(longindex,latindex,1);
%Finding the values for February - 2020
newchl2 = this(longindex,latindex,2);
Now, the last two lines basically extract for each month. However, this is time consuming and I wanted to know how to code a more efficient and quicker way to get all the monthly values averaged over the entire region from Jan '20 - Dec '21. The dataset is below:
My end goal is a 2-D result with Months and Chlorophyll values. I'd be grateful for any assistance in this. Thanks!

採用された回答

Peter Perkins
Peter Perkins 2022 年 5 月 18 日
Keegan, there's a bunch of ways to do this, here's one that uses a timetable:
>> lat = ncread("chl2020.nc","latitude");
>> lon = ncread("chl2020.nc","longitude");
>> chlor = squeeze(ncread("chl2020.nc","chl"));
>> whos
Name Size Bytes Class Attributes
chlor 489x241x24 22627008 double
lat 241x1 1928 double
lon 489x1 3912 double
>> j = (-25 <= lat) & (lat <= 30);
>> i = (32 <= lon) & (lon <= 120);
>> lat = lat(j);
>> lon = lon(i);
>> chlor = chlor(i,j,:);
>> whos
Name Size Bytes Class Attributes
chlor 353x221x24 14978496 double
i 489x1 489 logical
j 241x1 241 logical
lat 221x1 1768 double
lon 353x1 2824 double
>> Date = datetime(2020,(1:24)',1,Format="MMMyy");
>> Chlor = permute(chlor,[3 2 1]);
>> tt = timetable(Date,Chlor)
tt =
24×1 timetable
Date Chlor
_____ ________________
Jan20 1×221×353 double
Feb20 1×221×353 double
Mar20 1×221×353 double
Apr20 1×221×353 double
May20 1×221×353 double
Jun20 1×221×353 double
Jul20 1×221×353 double
Aug20 1×221×353 double
Sep20 1×221×353 double
Oct20 1×221×353 double
Nov20 1×221×353 double
Dec20 1×221×353 double
Jan21 1×221×353 double
Feb21 1×221×353 double
Mar21 1×221×353 double
Apr21 1×221×353 double
May21 1×221×353 double
Jun21 1×221×353 double
Jul21 1×221×353 double
Aug21 1×221×353 double
Sep21 1×221×353 double
Oct21 1×221×353 double
Nov21 1×221×353 double
Dec21 1×221×353 double
>> tt.MeanChlor = mean(tt.Chlor,2:3,"omitnan")
tt =
24×2 timetable
Date Chlor MeanChlor
_____ ________________ _________
Jan20 1×221×353 double 0.21169
Feb20 1×221×353 double 0.21149
Mar20 1×221×353 double 0.15771
Apr20 1×221×353 double 0.13574
May20 1×221×353 double 0.1589
Jun20 1×221×353 double 0.22037
Jul20 1×221×353 double 0.29464
Aug20 1×221×353 double 0.32263
Sep20 1×221×353 double 0.26623
Oct20 1×221×353 double 0.21402
Nov20 1×221×353 double 0.19245
Dec20 1×221×353 double 0.22103
Jan21 1×221×353 double 0.26072
Feb21 1×221×353 double 0.20912
Mar21 1×221×353 double 0.15732
Apr21 1×221×353 double 0.13859
May21 1×221×353 double 0.16133
Jun21 1×221×353 double 0.23466
Jul21 1×221×353 double 0.30558
Aug21 1×221×353 double 0.32634
Sep21 1×221×353 double 0.27826
Oct21 1×221×353 double 0.22286
Nov21 1×221×353 double 0.19408
Dec21 1×221×353 double 0.21508
  1 件のコメント
Keegan Carvalho
Keegan Carvalho 2022 年 5 月 18 日
Hi Peter, thanks a ton for this. I've understood where I've missed out; seems the indexing is key here to get things right.
Much appreciated :)
Cheers!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Find more on Tables in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by