Using "fminimax" in Matlab to solve the Max-Min programming problem

4 ビュー (過去 30 日間)
JacobsonRadical
JacobsonRadical 2022 年 4 月 24 日
コメント済み: JacobsonRadical 2022 年 4 月 24 日
Consider the following function defined in the following picture.
Define a finite set of points as follows:
I want to solve the following programing problem:
My idea is the following:
This programing is the first step of a general programing I am studying at. So it should not give trivial solution like 0 or something like this. However, when I attempted it in Matlab, the solution is not desirable.
The following is my code:
fun = @(x)[-log(max(1,0.1037))+x(1)*log(abs(poly1(0.1037)))+x(2)*log(abs(poly2(0.1037)))...
+x(3)*log(abs(poly3(0.1037)))+...
x(4)*log(abs(poly4(0.1037)));
-log(max(1,0.0259))+x(1)*log(abs(poly1(0.0259)))+x(2)*log(abs(poly2(0.0259)))...
+x(3)*log(abs(poly3(0.0259)))+...
x(4)*log(abs(poly4(0.0259)));
-log(max(1,0.2288))+x(1)*log(abs(poly1(0.2288)))+x(2)*log(abs(poly2(0.2288)))...
+x(3)*log(abs(poly3(0.2288)))+...
x(4)*log(abs(poly4(0.2288)));
-log(max(1,0.0938))+x(1)*log(abs(poly1(0.0938)))+x(2)*log(abs(poly2(0.0938)))...
+x(3)*log(abs(poly3(0.0938)))+...
x(4)*log(abs(poly4(0.0938)));
-log(max(1,0.0917))+x(1)*log(abs(poly1(0.0917)))+x(2)*log(abs(poly2(0.0917)))...
+x(3)*log(abs(poly3(0.0917)))+...
x(4)*log(abs(poly4(0.0917)));
-log(max(1,0.2386))+x(1)*log(abs(poly1(0.2386)))+x(2)*log(abs(poly2(0.2386)))...
+x(3)*log(abs(poly3(0.2386)))+...
x(4)*log(abs(poly4(0.2386)));
-log(max(1,0.2003))+x(1)*log(abs(poly1(0.2003)))+x(2)*log(abs(poly2(0.2003)))...
+x(3)*log(abs(poly3(0.2003)))+...
x(4)*log(abs(poly4(0.2003)));];
A= [];
b= [];
Aeq = [];
beq = [];
x0 = [0,0,0,0];
lb = [0,0,0,0];
up = [1000,1000,1000,1000];
[x,fval] = fminimax(fun,x0,A,b,Aeq,beq,lb,ub)
where in the code:
The solution that Matlab provides is the following:
I don't quite understand why this happens. Is there anything wrong in my idea or code? Thank you so much for your help!

採用された回答

Torsten
Torsten 2022 年 4 月 24 日
編集済み: Torsten 2022 年 4 月 24 日
Yes, [0 0 0 0] is the correct solution to your problem.
For all other c vectors >= 0, min g(x,c) would be negative.
Since your problem is linear in the c's, here is an easier way to solve your problem:
poly1=@(x)x.^2-x-1;
poly2=@(x)x.^4-x.^3-3*x.^2+x+1;
poly3=@(x)x.^8-x.^7-7*x.^6+4*x.^5+13*x.^4-4*x.^3-7*x.^2+x+1;
poly4=@(x)x.^3+x.^2-2*x-1;
X = [0.1037;0.0259;0.2288;0.0938;0.0917;0.2386;0.2003];
A = [log(abs(poly1(X))),log(abs(poly2(X))),log(abs(poly3(X))),log(abs(poly4(X))),ones(numel(X),1)] b = zeros(numel(X),1);
f = [0 0 0 0 -1].';
lb = [0 0 0 0 -Inf].';
ub = [1000 1000 1000 1000 Inf].';
c = linprog(f,A,b,[],[],lb,ub)
  3 件のコメント
Torsten
Torsten 2022 年 4 月 24 日
編集済み: Torsten 2022 年 4 月 24 日
log(max(1,x)) can always be neglected because it does not depend on c1,...,c4.
c(5) is min_(x in X) g(x,c) which is to be maximized - therefore min: -c(5) in the code.
JacobsonRadical
JacobsonRadical 2022 年 4 月 24 日
Great. Thank you so much.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear Least Squares についてさらに検索

製品


リリース

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by