How to define if a histogram is unimodal or bimodal

37 ビュー (過去 30 日間)
Jórdan Venâncio Leite
Jórdan Venâncio Leite 2022 年 4 月 10 日
回答済み: Walter Roberson 2022 年 4 月 10 日
Hello, I'm using the HartigansDipSignifTest // https://stackoverflow.com/questions/20815976/testing-for-unimodal-unimodality-or-bimodal-bimodality-distribution-in-matla // vhlab-toolbox-matlab/hartigansdipsigniftest.m at master · VH-Lab/vhlab-toolbox-matlab · GitHub // GitHub - VH-Lab/vhlab-toolbox-matlab: General purpose Matlab toolbox for neuroscience research created by Van Hooser lab and collaborators to determine if my histogram is unimodal or not. However, I'm having problems with the function compute_xpdf. Could anyone help me with this? Don't be scared, most of the code are the three functions that i used and that are in these links that I sent.
clc;
close all;
clear;
nboot = 500;
s = load('image66.mat');
dados = s.PerfilCinzasVertical;
% Unimodal test
[xpdf, n, b] = compute_xpdf(dados);
Error using histogram
Too many output arguments.

Error in solution>compute_xpdf (line 22)
[n, b] = histogram(dados, 12);
[dip, p_value, xlow, xup] = HartigansDipSignifTest(xpdf, nboot);
figure;
subplot(1,2,1);
bar(n, b)
title(sprintf('Probability of unimodal %.2f', p_value))
print -dpng modality.png
function [dados, n, b] = compute_xpdf(dados)
[n, b] = histogram(dados, 12);
% downsampling to speed up computations
dados = interp1 (1:length(dados), dados, 1:1000:length(dados));
end
function [dip,xl,xu, ifault, gcm, lcm, mn, mj]=HartigansDipTest(xpdf)
% function [dip,xl,xu, ifault, gcm, lcm, mn, mj]=HartigansDipTest(xpdf)
%
% This is a direct translation by F. Mechler (August 27 2002)
% into MATLAB from the original FORTRAN code of Hartigan's Subroutine DIPTST algorithm
% Ref: Algorithm AS 217 APPL. STATIST. (1985) Vol. 34. No.3 pg 322-325
%
% Appended by F. Mechler (September 2 2002) to deal with a perfectly unimodal input
% This check the original Hartigan algorithm omitted, which leads to an infinite cycle
%
% HartigansDipTest, like DIPTST, does the dip calculation for an ordered vector XPDF using
% the greatest convex minorant (gcm) and the least concave majorant (lcm),
% skipping through the data using the change points of these distributions.
% It returns the 'DIP' statistic, and 7 more optional results, which include
% the modal interval (XL,XU), ann error flag IFAULT (>0 flags an error)
% as well as the minorant and majorant fits GCM, LCM, and the corresponding support indices MN, and MJ
% sort X in increasing order in column vector
x=sort(xpdf(:));
N=length(x);
mn=zeros(size(x));
mj=zeros(size(x));
lcm=zeros(size(x));
gcm=zeros(size(x));
ifault=0;
% Check that N is positive
if (N<=0)
ifault=1;
fprintf(1,'\nHartigansDipTest. InputError : ifault=%d\n',ifault);
return;
end;
% Check if N is one
if (N==1)
xl=x(1);
xu=x(N);
dip=0.0;
ifault=2;
fprintf(1,'\nHartigansDipTest. InputError : ifault=%d\n',ifault);
return;
end;
if (N>1)
% Check that X is sorted
if (x ~= sort(x))
ifault=3;
fprintf(1,'\nHartigansDipTest. InputError : ifault=%d\n',ifault);
return;
end;
% Check for all values of X identical OR for case 1<N<4
if ~((x(N)>x(1)) & (4<=N))
xl=x(1);
xu=x(N);
dip=0.0;
ifault=4;
fprintf(1,'\nHartigansDipTest. InputError : ifault=%d\n',ifault);
return;
end;
end;
% Check if X is perfectly unimodal
% Hartigan's original DIPTST algorithm did not check for this condition
% and DIPTST runs into infinite cycle for a unimodal input
% The condition that the input is unimodal is equivalent to having
% at most 1 sign change in the second derivative of the input p.d.f.
xsign=-sign(diff(diff(x)));
% This condition check below works even
% if the unimodal p.d.f. has its mode in the very first or last point of the input
% because then the boolean argument is Empty Matrix, and ANY returns 1 for an Empty Matrix
posi=find(xsign>0);
negi=find(xsign<0);
if isempty(posi) | isempty(negi) | all(posi<min(negi))
% A unimodal function is its own best unimodal approximation, with a zero corresponding dip
xl=x(1);
xu=x(N);
dip=0.0;
ifault=5;
%fprintf(1,'\n The input is a perfectly UNIMODAL input function\n');
return;
end;
% LOW contains the index of the current estimate of the lower end of the modal interval
% HIGH contains the index of the current estimate of the upper end of the modal interval
fn=N;
low=1;
high=N;
dip=1/fn;
xl=x(low);
xu=x(high);
% establish the indices over which combination is necessary for the convex minorant fit
mn(1)=1;
for j=2:N
mn(j)=j-1;
% here is the beginning of a while loop
mnj=mn(j);
mnmnj=mn(mnj);
a=mnj-mnmnj;
b=j-mnj;
while ~( (mnj==1) | ((x(j)-x(mnj))*a < (x(mnj)-x(mnmnj))*b))
mn(j)=mnmnj;
mnj=mn(j);
mnmnj=mn(mnj);
a=mnj-mnmnj;
b=j-mnj;
end; % here is the end of the while loop
end; % end for j=2:N
% establish the indices over which combination is necessary for the concave majorant fit
mj(N)=N;
na=N-1;
for jk=1:na
k=N-jk;
mj(k)=k+1;
% here is the beginning of a while loop
mjk=mj(k);
mjmjk=mj(mjk);
a=mjk-mjmjk;
b=k-mjk;
while ~( (mjk==N) | ((x(k)-x(mjk))*a < (x(mjk)-x(mjmjk))*b))
mj(k)=mjmjk;
mjk=mj(k);
mjmjk=mj(mjk);
a=mjk-mjmjk;
b=k-mjk;
end; % here is the end of the while loop
end; % end for jk=1:na
itarate_flag = 1;
% start the cycling of great RECYCLE
while itarate_flag
% collect the change points for the GCM from HIGH to LOW
% CODE BREAK POINT 40
ic=1;
gcm(1)=high;
igcm1=gcm(ic);
ic=ic+1;
gcm(ic)=mn(igcm1);
while(gcm(ic) > low)
igcm1=gcm(ic);
ic=ic+1;
gcm(ic)=mn(igcm1);
end;
icx=ic;
% collect the change points for the LCM from LOW to HIGH
ic=1;
lcm(1)=low;
lcm1=lcm(ic);
ic=ic+1;
lcm(ic)=mj(lcm1);
while(lcm(ic) < high)
lcm1=lcm(ic);
ic=ic+1;
lcm(ic)=mj(lcm1);
end;
icv=ic;
% ICX, IX, IG are counters for the convex minorant
% ICV, IV, IH are counters for the concave majorant
ig=icx;
ih=icv;
% find the largest distance greater than 'DIP' between the GCM and the LCM from low to high
ix=icx-1;
iv=2;
d=0.0;
% Either GOTO CODE BREAK POINT 65 OR ELSE GOTO CODE BREAK POINT 50;
if ~(icx~=2 | icv~=2)
d=1.0/fn;
else
iterate_BP50=1;
while iterate_BP50
% CODE BREAK POINT 50
igcmx=gcm(ix);
lcmiv=lcm(iv);
if ~(igcmx > lcmiv)
% if the next point of either the GCM or LCM is from the LCM then calculate distance here
% OTHERWISE, GOTO BREAK POINT 55
lcmiv1=lcm(iv-1);
a=lcmiv-lcmiv1;
b=igcmx-lcmiv1-1;
dx=(x(igcmx)-x(lcmiv1))*a/(fn*(x(lcmiv)-x(lcmiv1)))-b/fn;
ix=ix-1;
if(dx < d)
goto60 = 1;
else
d=dx;
ig=ix+1;
ih=iv;
goto60 = 1;
end;
else
% if the next point of either the GCM or LCM is from the GCM then calculate distance here
% CODE BREAK POINT 55
lcmiv=lcm(iv);
igcm=gcm(ix);
igcm1=gcm(ix+1);
a=lcmiv-igcm1+1;
b=igcm-igcm1;
dx=a/fn-((x(lcmiv)-x(igcm1))*b)/(fn*(x(igcm)-x(igcm1)));
iv=iv+1;
if ~(dx < d)
d=dx;
ig=ix+1;
ih=iv-1;
end;
goto60 = 1;
end;
if goto60
% CODE BREAK POINT 60
if (ix < 1) ix=1; end;
if (iv > icv) iv=icv; end;
iterate_BP50 = (gcm(ix) ~= lcm(iv));
end;
end; % End of WHILE iterate_BP50
end; % End of ELSE (IF ~(icx~=2 | icv~=2)) i.e., either GOTO CODE BREAK POINT 65 OR ELSE GOTO CODE BREAK POINT 50
% CODE BREAK POINT 65
itarate_flag = ~(d < dip);
if itarate_flag
% if itarate_flag is true, then continue calculations and the great iteration cycle
% if itarate_flag is NOT true, then stop calculations here, and break out of great iteration cycle to BREAK POINT 100
% calculate the DIPs for the corrent LOW and HIGH
% the DIP for the convex minorant
dl=0.0;
% if not true, go to CODE BREAK POINT 80
if (ig ~= icx)
icxa=icx-1;
for j=ig:icxa
temp=1.0/fn;
jb=gcm(j+1);
je=gcm(j);
% if not true either, go to CODE BREAK POINT 74
if ~(je-jb <= 1)
if~(x(je)==x(jb))
a=(je-jb);
const=a/(fn*(x(je)-x(jb)));
for jr=jb:je
b=jr-jb+1;
t=b/fn-(x(jr)-x(jb))*const;
if (t>temp) temp=t; end;
end;
end;
end;
% CODE BREAK POINT 74
if (dl < temp) dl=temp; end;
end;
end;
% the DIP for the concave majorant
% CODE BREAK POINT 80
du=0.0;
% if not true, go to CODE BREAK POINT 90
if ~(ih==icv)
icva=icv-1;
for k=ih:icva
temp=1.0/fn;
kb=lcm(k);
ke=lcm(k+1);
% if not true either, go to CODE BREAK POINT 86
if ~(ke-kb <= 1)
if ~(x(ke)==x(kb))
a=ke-kb;
const=a/(fn*(x(ke)-x(kb)));
for kr=kb:ke
b=kr-kb-1;
t=(x(kr)-x(kb))*const-b/fn;
if (t>temp) temp=t; end;
end;
end;
end;
% CODE BREAK POINT 86
if (du < temp) du=temp; end;
end;
end;
% determine the current maximum
% CODE BREAK POINT 90
dipnew=dl;
if (du > dl) dipnew=du; end;
if (dip < dipnew) dip=dipnew; end;
low=gcm(ig);
high=lcm(ih);
end; % end of IF(itarate_flag) CODE from BREAK POINT 65
% return to CODE BREAK POINT 40 or break out of great RECYCLE;
end; % end of WHILE of great RECYCLE
% CODE BREAK POINT 100
dip=0.5*dip;
xl=x(low);
xu=x(high);
end
function [dip, p_value, xlow,xup]=HartigansDipSignifTest(xpdf,nboot)
% function [dip,p_value, xlow,xup]=HartigansDipSignifTest(xpdf,nboot)
%
% calculates Hartigan's DIP statistic and its significance for the empirical
% p.d.f XPDF (vector of sample values).
%
% This routine calls the matlab routine 'HartigansDipTest' that actually
% calculates the DIP NBOOT is the user-supplied sample size of boot-strap
% Code by F. Mechler (27 August 2002)
% calculate the DIP statistic from the empirical pdf
% sort and normalize to be in 0..1
[dip,xlow,xup, ifault, gcm, lcm, mn, mj]=hartigansdiptest(xpdf);
N=length(xpdf);
% calculate a bootstrap sample of size NBOOT of the dip statistic for a uniform pdf of sample size N (the same as empirical pdf)
boot_dip=[];
for i=1:nboot
unifpdfboot=sort(unifrnd(0,1,1,N));
[unif_dip]=hartigansdiptest(unifpdfboot);
boot_dip=[boot_dip; unif_dip];
end;
boot_dip=sort(boot_dip);
p_value=sum(dip<boot_dip)/nboot;
% Plot Boot-strap sample and the DIP statistic of the empirical pdf
figure(1); clf;
[hy,hx]=hist(boot_dip,100);
bar(hx,hy,'k'); hold on;
plot([dip dip],[0 max(hy)*1.1],'r:');
end
Thanks in advance.
  1 件のコメント
John D'Errico
John D'Errico 2022 年 4 月 10 日
Please stop asking the same question multiple times. You already asked this question. If you wanted to add information, just edit yourt FIRST question, or add this in a comment.

サインインしてコメントする。

回答 (1 件)

Walter Roberson
Walter Roberson 2022 年 4 月 10 日
histogram() has only ever returned the handle to the histogram() object.
By following your logic, I can see that your code is expecting histogram() to return x and y coordinates. histogram() has never done that. Instead, you can access properties of the histogram object instead.
It looks to me as if someone incorrectly adapted older code. In particular, it looks to me as if some looked at
[n,b] = hist(dados, 12);
and observed the warning that histogram should be used instead, and converted the code as
[n,b] = histogram(datos, 12);
without checking to be sure that histogram() returned the same thing that hist() returned.
This can be repaired in several different ways:
  1. Switch back to calling hist()
  2. Switch to [n,edges] = histcounts(dados, 12); b = edges(1) + diff(edges)/2;
  3. Switch to h = histogram(dados, 12); and then extract appropriate properties from h.

カテゴリ

Help Center および File ExchangeData Distribution Plots についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by