Numerical Integration on Matlab

5 ビュー (過去 30 日間)
Emrah Can Ucar
Emrah Can Ucar 2022 年 4 月 7 日
編集済み: Torsten 2022 年 4 月 8 日
There are 4 integrals I need to write, but I can't get correct results from them. Did I write it right?
Equations that end in c are constants. they don't change
xi_0 = r(1)/Rprop;
xi_1 = 1;
I1_c = 4*G*(1-epsilon*tan(phi));
I1 = integral(@(xint) xint*I1_c, xi_0, xi_1);
I2_c = lambda*(1+epsilon/tan(phi))*sin(phi)*cos(phi);
I2 = integral(@(xint) ((xint*I1_c)/2.*xint),xi_0,xi_1);
J1_c = 4*G*(1+epsilon/tan(phi));
J1 = integral(@(xint) xint*J1_c ,xi_0, xi_1);
J2_c = (1-epsilon*tan(phi))*((1+cos(2*phi))/(2));
J2 = integral(@(xint) (xint*J1_c)/2 ,xi_0,xi_1);

回答 (2 件)

Riccardo Scorretti
Riccardo Scorretti 2022 年 4 月 8 日
Hi. I would say no: you forget to multiply I2 and J2 by the respective constants I2_c and J2_c. That being said, these functions are polynomials with respect to xi: at your place I would go analytically.

Torsten
Torsten 2022 年 4 月 8 日
編集済み: Torsten 2022 年 4 月 8 日
I2 = integral(@(xint) ((xint*I1_c*I2_c)/2.*xint),xi_0,xi_1);
J2_c = (1-epsilon*tan(phi))*(cos(phi))^2;
J2 = integral(@(xint) (xint*J1_c)/2*J2_c ,xi_0,xi_1);
Not sure whether
I2' = lambda*(I1'/2 * zeta ...
or
I2' = lambda*(I1'/(2*zeta) ...
Some authors write
1/2*zeta
and mean
1/(2*zeta)

カテゴリ

Help Center および File ExchangeCalculus についてさらに検索

製品


リリース

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by