buondary condition derivative equal zero PDE

3 ビュー (過去 30 日間)
Edoardo Bertolotti
Edoardo Bertolotti 2022 年 3 月 21 日
編集済み: Torsten 2022 年 3 月 24 日
Hello, I am trying to solve a P.D.E. problem with explicit and implicit method (finite difference methods)
So I am building a grid for the Temperature profile through space and time.
How can I set that the derivative is zero at radius = 0?
*there was an error in the previous code, coordinates were wrong, like it was pointed out correctly in the comments
clear all
clc
rho=8900; %[kg/m^3] density
c=15; %[J/m*s*C] conducibility
Cp=600; %[m] specific heat
diffus= c/(rho*Cp); %[m^2/s] diffusivity
R=0.1; %[m] %radius
t_start = 0.0;
t_final = 20;
time_steps = 1000;
space_steps = 30;
r = (linspace(0.0,R,space_steps)).';
dr = r(2)-r(1); % vs dr = R/space_steps; %[m]
dt= 0.5*dr^2/diffus; %vs dt = t/time_steps; %[sec]
A=diffus*dt/dr^2;
x=linspace(0,R,space_steps); %discretization
LL=length(x);
time=linspace(t_start,t_final,time_steps);%discretization
TT=length(time);
% T start (T=1000C) u=temperature
for i = 1:LL+1
x(i) =(i-1)*dx;
u(i,1) = 1000 + 273.15; %Kelvin
end
% T boundary (r=0 T=dT/dr=0 - r=R 25C)
for k=1:TT+1
u(1,k) = ????
u(LL+1,k) = 25+ 273.15; %Kelvin
time(k) = (k-1)*dt;
end
% Explicit method
for k=1:TT % Time
for i=2:LL % Space
u(i,k+1) =u(i,k) + 0.5*A*(u(i-1,k)+u(i+1,k)-2.*u(i,k));
end
end
mesh(x,time,u')
title('Temperatures: explicit method','interpreter','latex')
xlabel('r [m]')
ylabel('time [sec]','interpreter','latex')
zlabel('Temperature','interpreter','latex')
  3 件のコメント
Edoardo Bertolotti
Edoardo Bertolotti 2022 年 3 月 22 日
yes, cylindrical
Edoardo Bertolotti
Edoardo Bertolotti 2022 年 3 月 22 日
rho=8900; %[kg/m^3] %density
r=0.05; %[m] %radius
c=15; %[J/m*s*C] %conducibility
Cp=600; %[m] %specific heat
diffus= c/(rho*Cp); %[cm^2/s] %diffusivity
a=(1/0.001)*(R/diffus)+(1/h^2)

サインインしてコメントする。

採用された回答

Torsten
Torsten 2022 年 3 月 22 日
編集済み: Torsten 2022 年 3 月 23 日
rho = 8900;
cp = 600;
D = 15;
a = D/(rho*cp);
R = 0.05;
uR = 25 + 273.15;
u0 = 1000 + 273.15;
rstart = 0.0;
rend = R;
nr = 30;
r = (linspace(rstart,rend,nr)).';
dr = r(2)-r(1);
tstart = 0.0;
tend = 1000.0;
dt = 0.5*dr^2/a;
t = tstart:dt:tend;
nt = numel(t);
A = a * dt/dr^2;
u = zeros(nr,nt);
u(:,1) = u0;
u(nr,:) = uR;
for it = 1:nt-1
u(2:nr-1,it+1) = u(2:nr-1,it) + A*( ...
(1 + dr./(2*r(2:nr-1))).*u(3:nr,it) - ...
2*u(2:nr-1,it) + ...
(1 - dr./(2*r(2:nr-1))).*u(1:nr-2,it));
u(1,it+1) = u(2,it+1);
end
plot(r,[u(:,1),u(:,round(numel(t)/20)),u(:,round(numel(t)/10)) ,u(:,round(numel(t)/5)),u(:,numel(t))]);
  2 件のコメント
Edoardo Bertolotti
Edoardo Bertolotti 2022 年 3 月 24 日
編集済み: Edoardo Bertolotti 2022 年 3 月 24 日
Hello,
honestly I cannot understand the loop, but graph-wise, seems to make sense
mesh(r,t,u')
title('Temperatures: explicit method','interpreter','latex')
xlabel('r [m]')
ylabel('time [sec]','interpreter','latex')
zlabel('Temperature','interpreter','latex')
I did a mistake in the data: the radius is 0.1 meters. And the problem ask when I reach 873.15K at 0.005 meters.
So by setting this new radius, I get
T = 873.23K at r=0.0034 at t=605.3270 (coordinates 2,287 of matrix "u")
T = 872.4383K at r=0.0069 at t=603.2105 (coordinates 3,286 of matrix "u")
Does it make sense?
Torsten
Torsten 2022 年 3 月 24 日
編集済み: Torsten 2022 年 3 月 24 日
rho = 8900;
cp = 600;
D = 15;
a = D/(rho*cp);
R = 0.1;
uR = 25 + 273.15;
u0 = 1000 + 273.15;
rstart = 0.0;
rend = R;
nr = 241;
r = (linspace(rstart,rend,nr)).';
dr = r(2)-r(1);
tstart = 0.0;
tend = 1000.0;
dt = 0.5*dr^2/a;
t = tstart:dt:tend;
nt = numel(t);
A = a * dt/dr^2;
u = zeros(nr,nt);
u(:,1) = u0;
u(nr,:) = uR;
for it = 1:nt-1
u(2:nr-1,it+1) = u(2:nr-1,it) + A*( ...
(1 + dr./(2*r(2:nr-1))).*u(3:nr,it) - ...
2*u(2:nr-1,it) + ...
(1 - dr./(2*r(2:nr-1))).*u(1:nr-2,it));
u(1,it+1) = u(2,it+1);
end
figure(1)
plot(r,[u(:,1),u(:,round(numel(t)/20)),u(:,round(numel(t)/10)) ,u(:,round(numel(t)/5)),u(:,numel(t))]);
% Post processing
r_query = 0.005;
ir_query = r_query/dr + 1; % nr above was adjusted so that r_query is a grid point (i.e. r_query/dr is integer)
% Of course, 2d interpolation with interp2 is also an
% option
T_query = 873.15;
t_query = interp1(u(ir_query,:),t,T_query);
t_query
figure(2)
plot(t,u(ir_query,:))

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeGeneral PDEs についてさらに検索

製品


リリース

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by