How to design a single layer perceptron with MATLAB built-in functions/nets/Apps?

3 ビュー (過去 30 日間)
Eshna Sasha
Eshna Sasha 2022 年 3 月 18 日
編集済み: Ayush Aniket 2025 年 6 月 13 日
Suppose I have 1000 images of 512 pixels each. I want to design a single layer perceptron and to track the accuracy of the validation/test and the train datasets, but I don't know where to start? Is there a MATLAB built-in function where I could do it? Or how do I write it in code?
% % Data Splitting
[setTrain, setTest] = partition(Images, [0.8, 0.2], 'randomized');
%% Defining the perceptron
n=1;
weights(:,n)=rand(1,1000);
eta=0.1;
epochs=50;
for i=1:epochs
for j=1:length(Images)
v=weights(:,n)'*x(:,j);
function out=hardlimit(v)
for i=1:numel(v)
if v(i)<0
out(i)=0;
else
out(i)=1;
end
end
error_train = 1 ;
error_test = 1;
error_perc_test=1;

回答 (1 件)

Ayush Aniket
Ayush Aniket 2025 年 6 月 13 日
編集済み: Ayush Aniket 2025 年 6 月 13 日
You can design a single-layer perceptron in MATLAB using built-in functions from the Deep Learning Toolbox. MATLAB provides functions like feedforwardnet, perceptron and train to simplify the process.Refer the code snippet below:
% 1. Load and Split Data
[setTrain, setTest] = partition(Images, [0.8, 0.2], 'randomized');
% 2. Define the Perceptron Model
net = perceptron;
% 3. Train the Model
net = train(net, setTrain, labelsTrain);
% 4. Evaluate Accuracy
predictions = net(setTest);
accuracy = sum(predictions == labelsTest) / numel(labelsTest);

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by