Matlab simulation for planet motion

4 ビュー (過去 30 日間)
Niklas Kurz
Niklas Kurz 2022 年 3 月 16 日
コメント済み: Niklas Kurz 2022 年 3 月 17 日
There were some attemps simulating planetary motion already, but I think mine is straightforward by solving and updating position via with Euler Cromers method:
t = 0;
while t < 10
pos1 = [1 2 3];
pos2 = [4 5 6];
m1 = 1;
m2 = 2;
G = 1;
r1 = pos1-pos2;
r2 = pos2-pos1;
F1 = G*m1*m2/norm(r1).^2.*r1/norm(r1);
F2 = G*m1*m2/norm(r2).^2.*r2/norm(r2);
dt = 0.1;
p1 = [0 100 0];
p2 = [0 100 0];
p1 = p1+F1.*dt;
p2 = p2+F2.*dt;
pos1 = pos1+p1/m1;
pos2 = pos2+p2/m2;
t = t+dt;
hold all;
plot3(pos1(1),pos1(2),pos1(3),'rx')
plot3(pos2(1),pos2(2),pos2(3),'bx')
end
However I don't really receive a plot of multiple data points, just 2 crosses remaining stationary. Also I get a 2-D plot even though I reverted to plot3
  1 件のコメント
KSSV
KSSV 2022 年 3 月 16 日
You can change it to 3D using view.
plot3(pos1(1),pos1(2),pos1(3),'rx')
plot3(pos2(1),pos2(2),pos2(3),'bx')
view(3)

サインインしてコメントする。

採用された回答

James Tursa
James Tursa 2022 年 3 月 16 日
The initial condition for position and velocity need to be outside the loop, prior to loop entry.
  1 件のコメント
Niklas Kurz
Niklas Kurz 2022 年 3 月 17 日
Thank you for pointing it out.

サインインしてコメントする。

その他の回答 (1 件)

KSSV
KSSV 2022 年 3 月 16 日
t = 0;
m1 = 1;
m2 = 2;
G = 1;
pos01 = [1 2 3];
pos02 = [4 5 6];
pos1 = zeros([],3) ;
pos2 = zeros([],3) ;
iter = 0 ;
while t < 10
iter = iter+1 ;
r1 = pos01-pos02;
r2 = pos02-pos01;
F1 = G*m1*m2/norm(r1).^2.*r1/norm(r1);
F2 = G*m1*m2/norm(r2).^2.*r2/norm(r2);
dt = 0.1;
p1 = [0 100 0];
p2 = [0 100 0];
p1 = p1+F1.*dt;
p2 = p2+F2.*dt;
pos1(iter,:) = pos01+p1/m1;
pos2(iter,:) = pos02+p2/m2;
pos01 = pos1(iter,:) ;
pos02 = pos2(iter,:) ;
t = t+dt;
end
figure
hold on
plot3(pos1(:,1),pos1(:,2),pos1(:,3),'rx')
plot3(pos2(:,1),pos2(:,2),pos2(:,3),'bx')
view(3)
  1 件のコメント
Niklas Kurz
Niklas Kurz 2022 年 3 月 17 日
This looks much better to me regarding number of points. Nevertheless there is still something weird with the coding going around. Even if it should equal the code that I assimilated from Glowscript:
G = 1
star = sphere(pos = vector(0,0,0), radius = 0.2, color = color.yellow, mass = 1000, momentum = vector(0,0 ,0), make_trail=True)
plan = sphere(pos = vector(1,0,0), radius = 0.5, color = color.blue , mass = 1 , momentum = vector(0,30,0), make_trail=True)
while (True):
rate(500)
r_star = star.pos - plan.pos
r_plan = plan.pos - star.pos
star.force = -G*star.mass*plan.mass/(mag(r_star)**2)*(r_star)/mag(r_star)
plan.force = -G*star.mass*plan.mass/(mag(r_plan)**2)*(r_plan)/mag(r_plan)
star.momentum = star.momentum + star.force * dt
plan.momentum = plan.momentum + plan.force * dt
star.pos = star.pos + star.momentum/star.mass * dt
plan.pos = plan.pos + plan.momentum/plan.mass * dt
t = t+dt

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeEarth and Planetary Science についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by