How to solve an implicit handle function with two variables?

3 ビュー (過去 30 日間)
Dor Gotleyb
Dor Gotleyb 2022 年 3 月 14 日
コメント済み: Dor Gotleyb 2022 年 3 月 14 日
Hi,
I have the following handle function:
Vd = @(V,I) V-I*R;
I = @(V,I) I0*(exp(Vd(V,I))-1);
How can I find I(V)=?
I0,R are constants.
Thanks

回答 (1 件)

Torsten
Torsten 2022 年 3 月 14 日
I = @(V) -I0 + lambertw(I0*R*exp(I0*R+V))/R;
  3 件のコメント
Torsten
Torsten 2022 年 3 月 14 日
編集済み: Torsten 2022 年 3 月 14 日
I don't know what you mean by "In reality my functin (I) is more complex then the the Lambert W function".
I = -I0 + lambertw(I0*R*exp(I0*R+V))/R
solves the equation
I = I0*(exp(V-I*R)-1)
for I.
If your equation is more complex, use "fzero" or "fsolve".
Dor Gotleyb
Dor Gotleyb 2022 年 3 月 14 日
I meant that my function is more complax then just I0*(exp(V-I*R)-1).
its a sum of several functions, but I didn't wont the quastion to be very long, just to understand the consept.
I = @(V,I) I0*(exp(Vd(V,I))-1) + a2*(exp(a3 * Vd(V,I))-1) + a1*sqrt(Vd(V,I)) + ...;
Ok, So I used 'fzero' as you suggested to solve for V=0:
F = @(0,I) -I + I0*(exp(Vd(0,I))-1);
Sol = fzero(F, 0);
And for other voltages I used the previous solution as a guess.
Thank you very mach

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeOptimization Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by