Use symbolic variable for lyapunov function

9 ビュー (過去 30 日間)
Kashish Pilyal
Kashish Pilyal 2022 年 3 月 8 日
編集済み: Sam Chak 2022 年 3 月 9 日
I am trying to find a value for a lyapunov function but I do not know the numeric values. When I run the lyapunov command, I get an error that only numeric arrays can be used. Is there a way for using only symbolic variable to get the answer.
  4 件のコメント
Sam Chak
Sam Chak 2022 年 3 月 9 日
I have tested and verified the results symbolically that holds.
clear all; clc
syms a b c
A = sym('A', [3 3]); % state matrix
P = sym('P', [3 3]); % positive definite matrix
A = [sym('0') sym('1') sym('0');
-a -b sym('0');
sym('0') c -c];
P = [((a^3 + 2*a^2*b*c + 2*a^2*c^2 + a^2 + a*b^2 + a*b*c + a*c^2 + b^3*c + b^2*c^2)/(2*a*b*(c^2 + b*c + a))) (1/(2*a)) (-a/(2*(c^2 + b*c + a)));
(1/(2*a)) ((a^2 + 2*a*c^2 + b*a*c + a + c^2 + b*c)/(2*a*b*(c^2 + b*c + a))) (c/(2*(c^2 + b*c + a)));
(-a/(2*(c^2 + b*c + a))) (c/(2*(c^2 + b*c + a))) (1/(2*c))];
Q = sym(eye(3)); % identity matrix
L = A.'*P + P*A + Q; % Lyapunov equation
simplify(L)
Result:
Kashish Pilyal
Kashish Pilyal 2022 年 3 月 9 日
@Sam Chak Thank you for the help.

サインインしてコメントする。

採用された回答

Sam Chak
Sam Chak 2022 年 3 月 9 日
If you are writing for a journal paper or a thesis, the following explanation might be helpful.
Let , , and .
There are a few ways to solve this symbolically.
syms a b c p11 p12 p22 p23 p33 p31
eqns = [1 - 2*a*p12 == 0, - a*p22 - b*p12 + c*p31 + p11 == 0, 1 - 2*b*p22 + 2*c*p23 + 2*p12 == 0, - b*p23 - c*p23 + c*p33 + p31 == 0, 1 - 2*c*p33 == 0, - a*p23 - c*p31 == 0];
S = solve(eqns);
sol = [S.p11; S.p12; S.p22; S.p23; S.p33; S.p31]
Result:
The result has been verified numerically:
clear all; clc
A = [0 1 0; -1 -2 0; 0 1 -1]
Q = eye(3)
P = lyap(A', Q)
A'*P + P*A
  5 件のコメント
Sam Chak
Sam Chak 2022 年 3 月 9 日
編集済み: Sam Chak 2022 年 3 月 9 日
My apologies for failing to inform that P has to be a symmetric matrix . Allow me to quote the theorem directly from Prof. Hassan Khalil's book, "Nonlinear Control":
Theorem: A matrix A is Hurwitz if and only if for every positive definite symmetric matrix Q, there exists a positive definite symmetric matrix P that satisfies the Lyapunov equation . Moreover, if A is Hurwitz, then P is the unique solution.
From the property of symmetry, we know that , , and .
I'm still learning and not good at expressing the control law and equations in the symbolic form in MATLAB. That's why I worked out the equations manually and then used MATLAB to solve the derived set of linear equations. Thanks for your original script in solving the symbolic equations.
Torsten
Torsten 2022 年 3 月 9 日
Ah, I didn't know this.
Thank you for the info.

サインインしてコメントする。

その他の回答 (1 件)

Torsten
Torsten 2022 年 3 月 9 日
編集済み: Torsten 2022 年 3 月 9 日
syms k_p k_d h
A = sym('A', [3 3]);
X = sym('X', [3 3]);
A = [sym('0') sym('1') sym('0');
-k_p -k_d sym('0');
sym('0') sym('1')/h sym('-1')/h];
Q = sym(eye(3));
N = sym(zeros(3));
B = A.'*X + X*A + Q;
F = solve(B==N)
  1 件のコメント
Kashish Pilyal
Kashish Pilyal 2022 年 3 月 9 日
Thank you for the answer but I have tried this method too. The matrix F in this case comes out to be empty. It is 0 by 1 symbolic. I actually managed to get the answer now. I had to write all equations seperately like this
syms P [3 3]
X= (A'*P)+(P*A);
eqnA=X(3,3)==-1;
eqnB=X(3,2)==0;
eqnC=X(3,1)==0;
eqnD=X(2,3)==0;
eqnE=X(1,3)==0;
eqnF=X(1,1)==-1;
eqnG=X(2,1)==0;
eqnH=X(2,2)==-1;
eqnI=X(1,2)==0;
Then I used solve and got the values of each element although the lyapunov function equation A'P+PA=-Q (in my case I) does not hold properly still. In other words the lyapunov equation does not give the identity matrix as output.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeMatrix Computations についてさらに検索

製品


リリース

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by