How to function 𝑎𝐴 + 𝑏𝐵 → 𝑝P in ODE89
8 ビュー (過去 30 日間)
古いコメントを表示
𝑎𝐴 + 𝑏𝐵 → 𝑝P
𝑑𝐴/𝑑𝑡 = −𝐾 ∗ 𝐴 ∗ 𝐵 𝑑𝐵/𝑑𝑡 = (𝑏/𝑎) ∗ (𝑑𝐴/𝑑𝑡) = −𝑌𝐵 ∗ (𝐾 ∗ 𝐴 ∗ 𝐵) 𝑑𝑃/𝑑𝑡 = −(𝑝/𝑎) ∗ (𝑑𝐴/𝑑𝑡) = 𝑌𝑃 ∗ (𝐾 ∗ 𝐴 ∗ 𝐵)
0 件のコメント
回答 (1 件)
Davide Masiello
2022 年 3 月 7 日
編集済み: Davide Masiello
2022 年 3 月 7 日
This should work:
clear,clc
tspan = [0,10];
y0 = [1,1,0];
[t,y] = ode89(@yourODEsystem,tspan,y0);
plot(t,y)
legend('A','B','P','Location','best')
function out = yourODEsystem(t,y)
% Coefficients
K = 1;
a = 2;
b = 1;
p = 0.5;
% Variables
A = y(1);
B = y(2);
P = y(3);
% Time derivatives
dAdt = -K*A*B;
dBdt = -(b/a)*K*A*B;
dPdt = (p/a)*K*A*B;
% Output
out = [dAdt;dBdt;dPdt];
end
Just replace you actual values of stoichiometric coefficients and kinetic constants.
6 件のコメント
Davide Masiello
2022 年 3 月 7 日
The function call in ode89 must be equal to the function name. Write this
clear,clc
tspan = [0,12];
y0=[0 1 3];
[t,y] = ode89(@DEdef,tspan,y0);
plot(t,y)
legend('CL','NOM','DBP','Location','best')
function Ddv_div = DEdef(t,y)
% Coefficients
K = 5E-5;
YB=1;
YP=0.15;
% Variables
A = y(1);
B = y(2);
P = y(3);
% Output
Ddv_div = [-K*A*B;-YB*(K*A*B);YP*(K*A*B)];
end
However, let me point out that if the initial concentration of one of the two reactants is zero (like in your case) you won't observe any change in the concentration of any of the compounds, since the reaction cannot occur.
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!