How to plot the magnitude of the Fourier transform of sampled pulse response?
4 ビュー (過去 30 日間)
古いコメントを表示
P(w) = 1 + 0.9e^(-jwT)
with T=1 and sampling theorem satisfaction I got P(e^-jw)= 1 + 0.9e^(-jw)
The pulse response is strictly band-limited in the Nyquist interval -Pi/T < w < Pi/T
What is the code for plotting the magnitude of the Fourier transform of sampled pulse response, i.e., 20log(|P(e^-jwT|)
0 件のコメント
回答 (1 件)
Image Analyst
2022 年 3 月 4 日
Did you try plot()? Like
plot(real(P), 'b-', 'LineWidth', 2);
2 件のコメント
Image Analyst
2022 年 3 月 4 日
You asked about plotting: "What is the code for plotting the magnitude of the Fourier transform"
So assuming you have P, here is the full plotting code:
plot(abs(P), 'b-', 'LineWidth', 2);
grid on;
title('P vs. Frequency', 'FontSize', 18);
xlabel('Frequency', 'FontSize', 18);
ylabel('P', 'FontSize', 18);
Is this your homework? If so:
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!