Trying reduce overfitting of training plot

2 ビュー (過去 30 日間)
Nathaniel Porter
Nathaniel Porter 2022 年 3 月 4 日
コメント済み: Nathaniel Porter 2022 年 3 月 7 日
Previoulsy tried running network with two sets of data however was not succesful. Achieved progres with running one per dataset however want to know how I can reduce any overfitting even though the validation accuracy seems good.
clc; clear all; close all;
%Import/Upload data
load Projectdata.mat
% change to label vector
CS1 = categories(categorical(INS_output));
Z2 = [];
for i = 1 : length(INS_output)
Z2(i,1) = find(INS_output(i)==CS1);
end
Yo2 = INS_output;
INS_output = Z2;
%transposing insulin data
InsulinReadings_T = InsulinReadings';
rand('seed', 0)
ind = randperm(size(InsulinReadings_T, 1));
InsulinReadings_T = InsulinReadings_T(ind, :);
INS_output = INS_output(ind);
InsulinReadings_train = InsulinReadings_T;
train_InsulinReadings = InsulinReadings_train(1:84,:);
train_INS_output = INS_output(1:84);
InsulinReadingsTrain=(reshape(train_InsulinReadings',[1758,1,1,84]));
val_InsulinReadings = InsulinReadings_train(85:102,:);
val_INS_output = INS_output(85:102);
InsulinReadingsVal=(reshape(val_InsulinReadings', [1758,1,1,18]));
test_InsulinReadings = InsulinReadings_train(103:120,:);
test_INS_output = INS_output(103:120);
InsulinReadingsTest=(reshape(test_InsulinReadings', [1758,1,1,18]));
%% NETWORK ARCHITECTURE
layers = [imageInputLayer([1758 1 1]) % Creating the image layer
convolution2dLayer([102 1],3,'Stride',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2,'Padding',[0 0 0 1])
dropoutLayer
fullyConnectedLayer(1)
regressionLayer];
% Specify training options.
opts = trainingOptions('sgdm', ...
'MaxEpochs',500, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false, ...
'ValidationData',{InsulinReadingsVal,val_INS_output,},...
'LearnRateDropFactor',0.2,...
'LearnRateDropPeriod',5,...
'ExecutionEnvironment', 'cpu', ...
'ValidationPatience',Inf);
%% Train network
%net = trainNetwork(XTrain,Trainoutfinal,layers,opts);
yc1 = train_INS_output(:);
net2 = trainNetwork(InsulinReadingsTrain,yc1,layers,opts);
%% Compare against testing Data
INS_outputpredicted = predict(net2, InsulinReadingsTest)
predictionError = test_INS_output - INS_outputpredicted;
squares = predictionError.^2;
rmse = sqrt(mean(squares))
figure
scatter(INS_outputpredicted, test_INS_output,'+')
title ('True value vs Predicted Value')
xlabel ("Predicted Value")
ylabel ("True Value")
hold on
plot([-3 3], [-7 7], 'b--')
  3 件のコメント
Nathaniel Porter
Nathaniel Porter 2022 年 3 月 4 日
Due to the significant gap found between the validation line and training line.
Ive J
Ive J 2022 年 3 月 5 日
Your train and validation sets should be non-overlapping, and if this is the case here (as should be), your model is protected against overfitting simply because train/validation sets never met each other.

サインインしてコメントする。

採用された回答

yanqi liu
yanqi liu 2022 年 3 月 7 日
may be set dropoutLayer(value) to reduce more parameters during training
  1 件のコメント
Nathaniel Porter
Nathaniel Porter 2022 年 3 月 7 日
Is a 0.5 dropout layer value good or should increase and determine if it helps

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeImage Data Workflows についてさらに検索

製品


リリース

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by