efficient variable circshift on 3D matrix

13 ビュー (過去 30 日間)
Jona Gladines
Jona Gladines 2022 年 3 月 2 日
回答済み: Jona Gladines 2022 年 3 月 2 日
Hello,
I have a working method of circularly shifting every 60 element vector in a 3D matrix A (300x300x60) over its corresponding value in 2D shift matrix B (300x300) which is relatively slow. I hope there is a faster method than the methods I currently have.
The shifting works as follows: If B(1,1) for example is 10, I want to shift A(1, 1, :) over 10 samples. Every value in B can be different.
My first approach was the following:
for i=1:size(B, 1)
for j=1:size(B, 2)
A(i, j, :) = circshift(A(i, j, :), B(i, j));
end
end
which works, but is relatively slow (0.2s). A second approach was to first reshape matrices A and B to 2D and 1D respectively and get rid of the nested for loop.
a = reshape(A, size(A, 1)*size(A, 2), size(A, 3))';
b = reshape(B, size(B, 1)*size(B, 2), 1);
for i = 1:length(b)
a(:, i) = circshift(a(:, i), b(i));
end
A = reshape(a', size(fm2, 1), size(fm2, 2), size(fm2, 3));
Which also works and is already little bit faster (0.1s).
Is there any other method to do this that would be much faster?
Thanks.
  5 件のコメント
Jan
Jan 2022 年 3 月 2 日
編集済み: Jan 2022 年 3 月 2 日
Providing inputs would be very useful. It matters e.g. if the values of B are unique or if there are typically many same values. Optimizing code can exploit such patterns of the input.
For the test data DGM hast provided, this is twice as fast:
s = size(A);
a = reshape(A, [], s(3))';
b = reshape(B, [], 1);
ub = unique(b);
for i = 1:numel(ub)
m = (b == ub(i));
a(:, m) = circshift(a(:, m), ub(i));
end
A = reshape(a', s);
Jona Gladines
Jona Gladines 2022 年 3 月 2 日
The shift data is part of a 3D recovery method, of which I cannot disclose more information at this point in time. however I've attached a shift matrix from one of the measurements. However since every item that is measured is different, these values wil also be different for every measurement. Sometimes there will be lots of the same values, other times values might differ more.

サインインしてコメントする。

採用された回答

Jan
Jan 2022 年 3 月 2 日
In this code:
s = size(A);
a = reshape(A, [], s(3))';
b = reshape(B, [], 1);
ub = unique(b);
for i = 1:numel(ub)
m = (b == ub(i));
a(:, m) = circshift(a(:, m), ub(i));
end
A = reshape(a', s);
40% of the computing time is spent for transposing. So if you store the data directly in a way, which let the operations work on the first dimension, the computing time is reduced also.

その他の回答 (1 件)

Jona Gladines
Jona Gladines 2022 年 3 月 2 日
The data is gathered from camera's and can only be transposed at this step, but your proposed method is certainly fast enough for my purpose.
Thanks to everyone who helped me in this quest.
regards,
Jona

カテゴリ

Help Center および File ExchangeGPU Computing についてさらに検索

製品


リリース

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by