the length of the time span in ode45

10 ビュー (過去 30 日間)
Tony Cheng
Tony Cheng 2022 年 2 月 24 日
コメント済み: Torsten 2022 年 2 月 24 日
Hi there,
I am using ode45 to solve a set of ODEs. Here I want to ask, if the length of the time span is relevant to the accuracy of the numerical results? I mean, is there a relationship like, a longer timespan corresponds to a rough accuracy, or a shorter timespan corresponds to a higher accuracy? Many thanks!

採用された回答

Jan
Jan 2022 年 2 月 24 日
The small discretization and rounding errors accumulate over the time. Small deviations of the initial values can be amplified also. So the general rule is, that a longer integration time can cause larger deviations of the final value.
Of course a stable trajectory does not suffer from this: e.g. a falling pencil will be at the same position and some houres also, so increasing the time will not change anything.
This concerns the real world also: To determine the exact position of the earth in 1 million years, you need to know the current position with an extreme accuracy. But, by the way, even the "year" is not defined accurate enough for this job.
  2 件のコメント
Tony Cheng
Tony Cheng 2022 年 2 月 24 日
then I will set the timespan in ode45 as [ 0 0.001 ], rather than [ 0 0.1 ].
Jan
Jan 2022 年 2 月 24 日
Usually the length of the time span depends on the problem you want to solve. So if you need the trajectory from 0 to 1, using an earlier final time is not an option.

サインインしてコメントする。

その他の回答 (1 件)

Torsten
Torsten 2022 年 2 月 24 日
If by "length of the time span" you mean" the number of output times (for the end time of integration fixed)", the answer is no - it is not relevant for the numerical accuracy of the numerical results.
  2 件のコメント
Tony Cheng
Tony Cheng 2022 年 2 月 24 日
Thanks for your reply!
What I mean is, for example, for the time span set in ode45, if I set the span as [ 0 0.001 ], will it produce better accuracy in the numerical results than that from [ 0 0.1 ]?
Torsten
Torsten 2022 年 2 月 24 日
At t = 0.001: no.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

製品


リリース

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by