How to differentiate vectors

2 ビュー (過去 30 日間)
Ikechi Ndamati
Ikechi Ndamati 2022 年 2 月 15 日
コメント済み: Star Strider 2022 年 2 月 17 日
Hello, please I have a code with lambda and n given below. Please how do I obtain d(n)/d(lambda) and d^2(n)/d(lambda)^2 i.e. the first and second deriviative of n wrt lambda?
lambda = linspace(0.5,2.5);
n = [1.55155531233953 1.54949576778463 1.54767969992980 1.54606941077293 1.54463432037936 1.54334939304258 1.54219395936135 1.54115082328366 1.54020557725122 1.53934607132757 1.53856199764777 1.53784456219577 1.53718622338909 1.53658048225698 1.53602171281363 1.53550502400216 1.53502614662547 1.53458134019413 1.53416731575664 1.53378117163556 1.53342033964695 1.53308253988297 1.53276574252631 1.53246813546774 1.53218809673566 1.53192417093373 1.53167504903131 1.53143955097005 1.53121661064518 1.53100526289637 1.53080463220578 1.53061392285076 1.53043241030050 1.53025943367952 1.53009438914900 1.52993672407995 1.52978593191141 1.52964154760293 1.52950314360382 1.52937032627300 1.52924273269261 1.52912002782641 1.52900190198108 1.52888806853379 1.52877826189461 1.52867223567629 1.52856976104774 1.52847062525013 1.52837463025771 1.52828159156731 1.52819133710247 1.52810370622009 1.52801854880867 1.52793572446860 1.52785510176605 1.52777655755305 1.52769997634709 1.52762524976427 1.52755227600092 1.52748095935889 1.52741120981038 1.52734294259859 1.52727607787089 1.52721054034140 1.52714625898047 1.52708316672849 1.52702120023196 1.52696029959983 1.52690040817834 1.52684147234282 1.52678344130489 1.52672626693392 1.52666990359143 1.52661430797744 1.52655943898778 1.52650525758144 1.52645172665720 1.52639881093877 1.52634647686784 1.52629469250434 1.52624342743341 1.52619265267854 1.52614234062043 1.52609246492120 1.52604300045342 1.52599392323372 1.52594521036064 1.52589683995631 1.52584879111185 1.52580104383610 1.52575357900747 1.52570637832878 1.52565942428470 1.52561270010188 1.52556618971130 1.52551987771288 1.52547374934221 1.52542779043906 1.52538198741785 1.52533632723963];
plot(n,lambda)
ylabel('n','FontWeight','bold','FontSize',14)
xlabel('lambda','FontWeight','bold','FontSize',14)

採用された回答

Star Strider
Star Strider 2022 年 2 月 15 日
Use the gradient function —
lambda = linspace(0.5,2.5);
n = [1.55155531233953 1.54949576778463 1.54767969992980 1.54606941077293 1.54463432037936 1.54334939304258 1.54219395936135 1.54115082328366 1.54020557725122 1.53934607132757 1.53856199764777 1.53784456219577 1.53718622338909 1.53658048225698 1.53602171281363 1.53550502400216 1.53502614662547 1.53458134019413 1.53416731575664 1.53378117163556 1.53342033964695 1.53308253988297 1.53276574252631 1.53246813546774 1.53218809673566 1.53192417093373 1.53167504903131 1.53143955097005 1.53121661064518 1.53100526289637 1.53080463220578 1.53061392285076 1.53043241030050 1.53025943367952 1.53009438914900 1.52993672407995 1.52978593191141 1.52964154760293 1.52950314360382 1.52937032627300 1.52924273269261 1.52912002782641 1.52900190198108 1.52888806853379 1.52877826189461 1.52867223567629 1.52856976104774 1.52847062525013 1.52837463025771 1.52828159156731 1.52819133710247 1.52810370622009 1.52801854880867 1.52793572446860 1.52785510176605 1.52777655755305 1.52769997634709 1.52762524976427 1.52755227600092 1.52748095935889 1.52741120981038 1.52734294259859 1.52727607787089 1.52721054034140 1.52714625898047 1.52708316672849 1.52702120023196 1.52696029959983 1.52690040817834 1.52684147234282 1.52678344130489 1.52672626693392 1.52666990359143 1.52661430797744 1.52655943898778 1.52650525758144 1.52645172665720 1.52639881093877 1.52634647686784 1.52629469250434 1.52624342743341 1.52619265267854 1.52614234062043 1.52609246492120 1.52604300045342 1.52599392323372 1.52594521036064 1.52589683995631 1.52584879111185 1.52580104383610 1.52575357900747 1.52570637832878 1.52565942428470 1.52561270010188 1.52556618971130 1.52551987771288 1.52547374934221 1.52542779043906 1.52538198741785 1.52533632723963];
plot(n,lambda)
ylabel('\lambda','FontWeight','bold','FontSize',14)
xlabel('n','FontWeight','bold','FontSize',14)
dndlambda = gradient(n) ./ gradient(lambda); % First Numerical Derivative
d2ndlambda2 = gradient(dndlambda) ./ gradient(lambda); % Second NMumerical Derivative
figure
yyaxis left
plot(lambda, n, 'DisplayName','Original Data')
yyaxis right
plot(lambda, dndlambda, 'DisplayName','First Derivative')
hold on
plot(lambda, d2ndlambda2, 'DisplayName','Second Derivative')
hold off
grid
xlabel('\lambda','FontWeight','bold','FontSize',14)
legend('Location','best')
Note that the first asrgument to plot is the independent variable and the second argument is the dependent variable. I corrected the axis labels in the firsst plot to reflect this.
I used yyaxis because the magnitudes between the original data and the derivatives are significantly different.
.
  2 件のコメント
Ikechi Ndamati
Ikechi Ndamati 2022 年 2 月 17 日
Thanks so much @Star Strider
Star Strider
Star Strider 2022 年 2 月 17 日
As always, my pleasure!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLine Plots についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by