Summary table of machine learning model

3 ビュー (過去 30 日間)
murad subih
murad subih 2022 年 2 月 6 日
回答済み: Himanshu 2025 年 5 月 16 日
I am training some models of ML using Matlab to predict output.After I trained and tested the models ,I want to know the summary table for all models (slope,intercept,Brier scores,Auc),which function can I use to see the summary of trained models? Thanks

回答 (1 件)

Himanshu
Himanshu 2025 年 5 月 16 日
Hello,
To create a summary table of metrics (slope, intercept, Brier score, AUC) for multiple trained models in MATLAB, you can manually extract these values using model-specific properties and evaluation functions.
In MATLAB, you can construct it by combining outputs from functions like "coefCI" (for linear models), "predict", "loss", and "perfcurve" (for AUC).
Please refer to the attached documentations for more information.
  1. Confidence intervals of coefficient estimates of linear regression model - https://www.mathworks.com/help/stats/linearmodel.coefci.html
  2. Compute deep learning network output for inference - https://www.mathworks.com/help/deeplearning/ref/dlnetwork.predict.html
  3. Regression loss for linear regression models - https://www.mathworks.com/help/stats/regressionlinear.loss.html
  4. Receiver operating characteristic (ROC) curve or other performance curve for classifier output - https://www.mathworks.com/help/stats/perfcurve.html
I hope this helps.

カテゴリ

Help Center および File ExchangeROC - AUC についてさらに検索

製品


リリース

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by