How do I plot a integration result?
11 ビュー (過去 30 日間)
古いコメントを表示
Hello everyone
I need to plot the result of the integral as I tried in the code below (figure 2). Obviously I am doing something wrong or missing something; I am not that experienced. The Result of the integral returns a single value. How can I plot the result of the integral elementwise. It would be a great help.
Thank You.
clc
clear all
Fs= 2.16*10^-6*pi; % Geometrical Factor
h= 4.136*10^-15; % Plancks Constant
c= 3*10^8; % Speed of light
K = 8.61*10^-5; % Boltzmanns Constant
Ts=5760; % Temparature of the sun
E=0:0.0001:4;
bs=((2*Fs)/((h^3))*(c^2)).*((E.^2)./(exp(E./(K*Ts))-1));
fun=@(E) (E.*(2*Fs/((h^3)*(c^2))).*((E.^2)./(exp(E./(K*Ts))-1)));
Ps=integral(fun,0,Inf)
figure(1)
plot(E,bs),xlabel('Photon Energy'),ylabel('Spectral Flux Density')
figure(2)
plot(E,Ps),xlabel('Photon Energy'),ylabel('Power Density')

0 件のコメント
採用された回答
Star Strider
2022 年 2 月 1 日
The ‘Ps’ integration produceds onlly one value, the value of the integral between the limits of integration.
To get a vector for it, either use a for loop or arrayfun (which is a for loop in disguise) as I did here.
% clc
% clear all
Fs= 2.16*10^-6*pi; % Geometrical Factor
h= 4.136*10^-15; % Plancks Constant
c= 3*10^8; % Speed of light
K = 8.61*10^-5; % Boltzmanns Constant
Ts=5760; % Temparature of the sun
% E=0:0.0001:4;
E = linspace(0, 6, 250);
bs=((2*Fs)/((h^3))*(c^2)).*((E.^2)./(exp(E./(K*Ts))-1));
fun=@(E) (E.*(2*Fs/((h^3)*(c^2))).*((E.^2)./(exp(E./(K*Ts))-1)));
Ps=arrayfun(@(ul)integral(fun,0,ul), E);
figure(1)
plot(E,bs),xlabel('Photon Energy'),ylabel('Spectral Flux Density')
figure(2)
plot(E,Ps),xlabel('Photon Energy'),ylabel('Power Density')
I changed the end value of ‘E’ just to see what the curve did, and discovered that it became asymptotic at about 6.. Change it back if necessary. Also, 250 elements of it are enough to produce a smooth curve.
.
2 件のコメント
Star Strider
2022 年 2 月 1 日
Sure!
% clc
% clear all
Fs= 2.16*10^-6*pi; % Geometrical Factor
h= 4.136*10^-15; % Plancks Constant
c= 3*10^8; % Speed of light
K = 8.61*10^-5; % Boltzmanns Constant
Ts=5760; % Temparature of the sun
% E=0:0.0001:4;
E = linspace(0, 6, 250);
bs=((2*Fs)/((h^3))*(c^2)).*((E.^2)./(exp(E./(K*Ts))-1));
fun=@(E) (E.*(2*Fs/((h^3)*(c^2))).*((E.^2)./(exp(E./(K*Ts))-1)));
for k = 1:numel(E)
Ps(k) = integral(fun,0,E(k));
end
figure(1)
plot(E,bs),xlabel('Photon Energy'),ylabel('Spectral Flux Density')
figure(2)
plot(E,Ps),xlabel('Photon Energy'),ylabel('Power Density')
The same result.
I am not certain whether arrayfun or the for loop is faster, since I did not time them here.
.
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Graphics Performance についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!