Convolution Neural network for regression problems
17 ビュー (過去 30 日間)
古いコメントを表示
Hi everyone
I want to use CNN for my problem. The existing examples in the MATLAB (Here) provided for images as 4-D arrays but my problem is as follows:
Inputs = N (78000,24)
Output = Y(78000,1)
How can I use the mentioned examples for my problem?
Thanks in advanced.
1 件のコメント
採用された回答
yanqi liu
2022 年 1 月 11 日
yes,sir,may be use rand data to simulate your application,then you can replace data,such as
clc; clear all; close all;
% Inputs = N (78000,24);
% Output = Y(78000,1);
Inputs = randn(78000,24);
Output = rand(78000,1);
% get input data matrix
XTrain=(reshape(Inputs', [24,1,1,78000]));
YTrain=Output;
layers = [imageInputLayer([24 1 1])
convolution2dLayer([15 1],3,'Stride',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2,'Padding',[0 0 0 1])
dropoutLayer
fullyConnectedLayer(1)
regressionLayer];
miniBatchSize = 128;
options = trainingOptions('sgdm', ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',30, ...
'InitialLearnRate',1e-3, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',20, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false);
net = trainNetwork(XTrain,YTrain,layers,options);
3 件のコメント
その他の回答 (1 件)
参考
カテゴリ
Help Center および File Exchange で Deep Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!