Convolution Neural network for regression problems

17 ビュー (過去 30 日間)
Jahetbe
Jahetbe 2022 年 1 月 10 日
コメント済み: yanqi liu 2022 年 2 月 10 日
Hi everyone
I want to use CNN for my problem. The existing examples in the MATLAB (Here) provided for images as 4-D arrays but my problem is as follows:
Inputs = N (78000,24)
Output = Y(78000,1)
How can I use the mentioned examples for my problem?
Thanks in advanced.
  1 件のコメント
KSSV
KSSV 2022 年 1 月 10 日
編集済み: KSSV 2022 年 1 月 10 日
You can use NN toolbox right? Attach your data and tell us about your data, lets give a try to help you.

サインインしてコメントする。

採用された回答

yanqi liu
yanqi liu 2022 年 1 月 11 日
yes,sir,may be use rand data to simulate your application,then you can replace data,such as
clc; clear all; close all;
% Inputs = N (78000,24);
% Output = Y(78000,1);
Inputs = randn(78000,24);
Output = rand(78000,1);
% get input data matrix
XTrain=(reshape(Inputs', [24,1,1,78000]));
YTrain=Output;
layers = [imageInputLayer([24 1 1])
convolution2dLayer([15 1],3,'Stride',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2,'Padding',[0 0 0 1])
dropoutLayer
fullyConnectedLayer(1)
regressionLayer];
miniBatchSize = 128;
options = trainingOptions('sgdm', ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',30, ...
'InitialLearnRate',1e-3, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',20, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false);
net = trainNetwork(XTrain,YTrain,layers,options);
  3 件のコメント
Jahetbe
Jahetbe 2022 年 2 月 10 日
Thank you for your answered.
Could you please help me to improve the accuracy of model?
I cannot find any optimum stduture to find my data not only when considered data for training and validations, but also when considered all of them for training.
Regards,
yanqi liu
yanqi liu 2022 年 2 月 10 日
yes,sir,just send data to me

サインインしてコメントする。

その他の回答 (1 件)

Jahetbe
Jahetbe 2022 年 1 月 10 日
Dear @KSSV
Thank you for your response.
I want to use CNN to solve my problem.
My data is as follows.
Inputs = [ x11 x12 x13 x14
x21 x22 x23 x24
. . . .
xN1 xN2 XN3 XN4]
Outputs = [ Y11
Y21
.
.
.
.
YN1 ]
Wher N is the number of samples (i.e., 78000)

カテゴリ

Help Center および File ExchangeDeep Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by