how to validate data trainned

5 ビュー (過去 30 日間)
mohd akmal masud
mohd akmal masud 2022 年 1 月 7 日
コメント済み: mohd akmal masud 2022 年 5 月 29 日
Hi all,
Anyone know how to validate the data trainned?
Because before this, I just trainned what I labelled using groundTruthLabeler. Then how to validate data (in red rectangle) that we have??

採用された回答

yanqi liu
yanqi liu 2022 年 1 月 8 日
yes,sir,may be set options,such as
options = trainingOptions('sgdm', ...
'MaxEpochs',100, ...
'GradientThreshold',1, ...
'Verbose',false, ...
'ValidationData',{XVal, YVal},...
'LearnRateDropFactor',0.2,...
'LearnRateDropPeriod',5,...
'Plots','training-progress');
  11 件のコメント
mohd akmal masud
mohd akmal masud 2022 年 5 月 29 日
Dear yanqi,
can help me how to Compare Ground Truth Against Network Prediction
%% first, read the image data and labelled images
clc
clear all; close all;
dataSetDir = fullfile('C:\Users\Akmal\Desktop\I-131 256 28.02.2020\I-131 SPECT NEMA VALIDATION 01112019 256X256 26.09.2021 petang');
imageDir = fullfile(dataSetDir,'Image');
labelDir = fullfile(dataSetDir,'PixelLabelData');
imds = imageDatastore(imageDir);
% view data set images origional
% figure
% for i = 1:23
% subplot(5,5,i)
% I = readimage(imds,i);
% imshow(I)
% title('training labels')
% end
%% train the data. if network already, then just drag it into command window
classNames = ["foreground" "background"];
labelIDs = [1 2];
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);
imds1 = imageDatastore(labelDir);
% figure
% for i = 1:5
% subplot(3,3,i)
% I = readimage(imds1,i);
% imshow(I)
% title('training labels')
% end
ds = pixelLabelImageDatastore(imds,pxds);
tbl = countEachLabel(pxds)
totalNumberOfPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / totalNumberOfPixels;
inverseFrequency = 1./frequency
% layerf = pixelClassificationLayer(...
% 'Classes',tbl.Name,'ClassWeights',inverseFrequency)
%
layerf=pixelClassificationLayer("Name","Segmentation-Layer")
lgraph = layerGraph();
tempLayers = [
imageInputLayer([512/2 512/2 1],"Name","ImageInputLayer")
convolution2dLayer([4 4],64,"Name","Encoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-1-ReLU-1")
convolution2dLayer([4 4],64,"Name","Encoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-1-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
maxPooling2dLayer([2 2],"Name","Encoder-Stage-1-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],128,"Name","Encoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-2-ReLU-1")
convolution2dLayer([4 4],128,"Name","Encoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-2-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
maxPooling2dLayer([2 2],"Name","Encoder-Stage-2-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],256,"Name","Encoder-Stage-3-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-3-ReLU-1")
convolution2dLayer([4 4],256,"Name","Encoder-Stage-3-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-3-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
dropoutLayer(0.5,"Name","Encoder-Stage-3-DropOut")
maxPooling2dLayer([2 2],"Name","Encoder-Stage-3-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],512,"Name","Bridge-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Bridge-ReLU-1")
convolution2dLayer([4 4],512,"Name","Bridge-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Bridge-ReLU-2")
dropoutLayer(0.5,"Name","Bridge-DropOut")
transposedConv2dLayer([2 2],256,"Name","Decoder-Stage-1-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-1-DepthConcatenation")
convolution2dLayer([4 4],256,"Name","Decoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-ReLU-1")
convolution2dLayer([4 4],256,"Name","Decoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-ReLU-2")
transposedConv2dLayer([2 2],128,"Name","Decoder-Stage-2-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-2-DepthConcatenation")
convolution2dLayer([4 4],128,"Name","Decoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-ReLU-1")
convolution2dLayer([4 4],128,"Name","Decoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-ReLU-2")
transposedConv2dLayer([2 2],64,"Name","Decoder-Stage-3-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-3-DepthConcatenation")
convolution2dLayer([4 4],64,"Name","Decoder-Stage-3-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-ReLU-1")
convolution2dLayer([4 4],64,"Name","Decoder-Stage-3-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-ReLU-2")
convolution2dLayer([1 1],3,"Name","Final-ConvolutionLayer","Padding","same","WeightsInitializer","he")
softmaxLayer("Name","Softmax-Layer")
pixelClassificationLayer("Name","Segmentation-Layer")
];
lgraph = addLayers(lgraph,tempLayers);
% clean up helper variable
clear tempLayers;
lgraph = connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Encoder-Stage-1-MaxPool");
lgraph = connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Decoder-Stage-3-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Encoder-Stage-2-MaxPool");
lgraph = connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Decoder-Stage-2-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Encoder-Stage-3-ReLU-2","Encoder-Stage-3-DropOut");
lgraph = connectLayers(lgraph,"Encoder-Stage-3-ReLU-2","Decoder-Stage-1-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Decoder-Stage-1-UpReLU","Decoder-Stage-1-DepthConcatenation/in1");
lgraph = connectLayers(lgraph,"Decoder-Stage-2-UpReLU","Decoder-Stage-2-DepthConcatenation/in1");
lgraph = connectLayers(lgraph,"Decoder-Stage-3-UpReLU","Decoder-Stage-3-DepthConcatenation/in1");
% lgraph = connectLayers(lgraph,'relu12','skipConv1');
% lgraph = connectLayers(lgraph,'Encoder-Stage-2-Conv-2','add22/in2');
% lgraph = connectLayers(lgraph,'relu22','');
% Plot Layers
figure,plot(lgraph);
imageSize = [256 256 1];
numClasses = 2;
encoderDepth = 3;
lgraph = unetLayers(imageSize,numClasses,'EncoderDepth',encoderDepth)
% split data
[imdsTrain, imdsVal, pxdsTrain, pxdsVal] = partitionCamVidData2(imds,pxds);
pximds = pixelLabelImageDatastore(imdsTrain,pxdsTrain);
pximdsVal = pixelLabelImageDatastore(imdsVal,pxdsVal);
options1 = trainingOptions('adam', ...
'InitialLearnRate',1e-3, ...
'MaxEpochs',100, ...
'LearnRateDropFactor',5e-1, ...
'LearnRateDropPeriod',10, ...
'ValidationData',pximdsVal,...
'ValidationFrequency',3, ...
'LearnRateSchedule','piecewise', ...
'MiniBatchSize',4,'Plots','training-progress');
net1 = trainNetwork(pximds,lgraph,options1);
function [imdsTrain, imdsTest, pxdsTrain, pxdsTest] = partitionCamVidData2(imds,pxds)
% Partition CamVid data by randomly selecting 60% of the data for training. The
% rest is used for testing.
% Set initial random state for example reproducibility.
rng(0);
numFiles = numel(imds.Files);
shuffledIndices = randperm(numFiles);
% Use 60% of the images for training.
N = round(0.60 * numFiles);
trainingIdx = shuffledIndices(1:N);
% Use the rest for testing.
testIdx = shuffledIndices(N+1:end);
% Create image datastores for training and test.
trainingImages = imds.Files(trainingIdx);
testImages = imds.Files(testIdx);
imdsTrain = imageDatastore(trainingImages);
imdsTest = imageDatastore(testImages);
% Extract class and label IDs info.
classes = pxds.ClassNames;
labelIDs = 1:numel(pxds.ClassNames);
% Create pixel label datastores for training and test.
trainingLabels = pxds.Files(trainingIdx);
testLabels = pxds.Files(testIdx);
pxdsTrain = pixelLabelDatastore(trainingLabels, classes, labelIDs);
pxdsTest = pixelLabelDatastore(testLabels, classes, labelIDs);
end

サインインしてコメントする。

その他の回答 (0 件)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by