現在この質問をフォロー中です
- フォローしているコンテンツ フィードに更新が表示されます。
- コミュニケーション基本設定に応じて電子メールを受け取ることができます。
how to validate data trainned
2 ビュー (過去 30 日間)
古いコメントを表示
Hi all,
Anyone know how to validate the data trainned?
Because before this, I just trainned what I labelled using groundTruthLabeler. Then how to validate data (in red rectangle) that we have??
採用された回答
yanqi liu
2022 年 1 月 8 日
yes,sir,may be set options,such as
options = trainingOptions('sgdm', ...
'MaxEpochs',100, ...
'GradientThreshold',1, ...
'Verbose',false, ...
'ValidationData',{XVal, YVal},...
'LearnRateDropFactor',0.2,...
'LearnRateDropPeriod',5,...
'Plots','training-progress');
11 件のコメント
mohd akmal masud
2022 年 1 月 9 日
sir, this is my code. Then where shoud I put your code suggestion?
%% first, read the image data and labelled images
clc
clear all
dataSetDir = fullfile('C:\Users\Akmal\Desktop\I-131 256 28.02.2020\I-131 SPECT NEMA VALIDATION 01112019 256X256 26.09.2021 petang');
imageDir = fullfile(dataSetDir,'Image');
labelDir = fullfile(dataSetDir,'PixelLabelData');
imds = imageDatastore(imageDir);
% view data set images origional
figure
for i = 1:23
subplot(5,5,i)
I = readimage(imds,i);
imshow(I)
title('training labels')
end
%% train the data. if network already, then just drag it into command window
classNames = ["foreground" "background"];
labelIDs = [1 2];
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);
imds1 = imageDatastore(labelDir);
% figure
% for i = 1:5
% subplot(3,3,i)
% I = readimage(imds1,i);
% imshow(I)
% title('training labels')
% end
ds = pixelLabelImageDatastore(imds,pxds);
tbl = countEachLabel(pxds)
totalNumberOfPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / totalNumberOfPixels;
inverseFrequency = 1./frequency
% layerf = pixelClassificationLayer(...
% 'Classes',tbl.Name,'ClassWeights',inverseFrequency)
%
layerf=pixelClassificationLayer("Name","Segmentation-Layer")
lgraph = layerGraph();
tempLayers = [
imageInputLayer([512/2 512/2 1],"Name","ImageInputLayer")
convolution2dLayer([4 4],64,"Name","Encoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-1-ReLU-1")
convolution2dLayer([4 4],64,"Name","Encoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-1-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
maxPooling2dLayer([2 2],"Name","Encoder-Stage-1-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],128,"Name","Encoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-2-ReLU-1")
convolution2dLayer([4 4],128,"Name","Encoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-2-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
maxPooling2dLayer([2 2],"Name","Encoder-Stage-2-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],256,"Name","Encoder-Stage-3-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-3-ReLU-1")
convolution2dLayer([4 4],256,"Name","Encoder-Stage-3-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-3-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
dropoutLayer(0.5,"Name","Encoder-Stage-3-DropOut")
maxPooling2dLayer([2 2],"Name","Encoder-Stage-3-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],512,"Name","Bridge-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Bridge-ReLU-1")
convolution2dLayer([4 4],512,"Name","Bridge-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Bridge-ReLU-2")
dropoutLayer(0.5,"Name","Bridge-DropOut")
transposedConv2dLayer([2 2],256,"Name","Decoder-Stage-1-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-1-DepthConcatenation")
convolution2dLayer([4 4],256,"Name","Decoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-ReLU-1")
convolution2dLayer([4 4],256,"Name","Decoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-ReLU-2")
transposedConv2dLayer([2 2],128,"Name","Decoder-Stage-2-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-2-DepthConcatenation")
convolution2dLayer([4 4],128,"Name","Decoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-ReLU-1")
convolution2dLayer([4 4],128,"Name","Decoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-ReLU-2")
transposedConv2dLayer([2 2],64,"Name","Decoder-Stage-3-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-3-DepthConcatenation")
convolution2dLayer([4 4],64,"Name","Decoder-Stage-3-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-ReLU-1")
convolution2dLayer([4 4],64,"Name","Decoder-Stage-3-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-ReLU-2")
convolution2dLayer([1 1],3,"Name","Final-ConvolutionLayer","Padding","same","WeightsInitializer","he")
softmaxLayer("Name","Softmax-Layer")
pixelClassificationLayer("Name","Segmentation-Layer")
];
lgraph = addLayers(lgraph,tempLayers);
% clean up helper variable
clear tempLayers;
lgraph = connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Encoder-Stage-1-MaxPool");
lgraph = connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Decoder-Stage-3-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Encoder-Stage-2-MaxPool");
lgraph = connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Decoder-Stage-2-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Encoder-Stage-3-ReLU-2","Encoder-Stage-3-DropOut");
lgraph = connectLayers(lgraph,"Encoder-Stage-3-ReLU-2","Decoder-Stage-1-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Decoder-Stage-1-UpReLU","Decoder-Stage-1-DepthConcatenation/in1");
lgraph = connectLayers(lgraph,"Decoder-Stage-2-UpReLU","Decoder-Stage-2-DepthConcatenation/in1");
lgraph = connectLayers(lgraph,"Decoder-Stage-3-UpReLU","Decoder-Stage-3-DepthConcatenation/in1");
% lgraph = connectLayers(lgraph,'relu12','skipConv1');
% lgraph = connectLayers(lgraph,'Encoder-Stage-2-Conv-2','add22/in2');
% lgraph = connectLayers(lgraph,'relu22','');
% Plot Layers
figure,plot(lgraph);
imageSize = [256 256 1];
numClasses = 2;
encoderDepth = 3;
lgraph = unetLayers(imageSize,numClasses,'EncoderDepth',encoderDepth)
options1 = trainingOptions('adam', ...
'InitialLearnRate',1e-3, ...
'MaxEpochs',100, ...
'LearnRateDropFactor',5e-1, ...
'LearnRateDropPeriod',10, ...
'LearnRateSchedule','piecewise', ...
'MiniBatchSize',4,'Plots','training-progress');
net1 = trainNetwork(ds,lgraph,options1);
yanqi liu
2022 年 1 月 10 日
%% first, read the image data and labelled images
clc
clear all
dataSetDir = fullfile('C:\Users\Akmal\Desktop\I-131 256 28.02.2020\I-131 SPECT NEMA VALIDATION 01112019 256X256 26.09.2021 petang');
imageDir = fullfile(dataSetDir,'Image');
labelDir = fullfile(dataSetDir,'PixelLabelData');
imds = imageDatastore(imageDir);
% view data set images origional
figure
for i = 1:23
subplot(5,5,i)
I = readimage(imds,i);
imshow(I)
title('training labels')
end
%% train the data. if network already, then just drag it into command window
classNames = ["foreground" "background"];
labelIDs = [1 2];
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);
imds1 = imageDatastore(labelDir);
% figure
% for i = 1:5
% subplot(3,3,i)
% I = readimage(imds1,i);
% imshow(I)
% title('training labels')
% end
ds = pixelLabelImageDatastore(imds,pxds);
tbl = countEachLabel(pxds)
totalNumberOfPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / totalNumberOfPixels;
inverseFrequency = 1./frequency
% layerf = pixelClassificationLayer(...
% 'Classes',tbl.Name,'ClassWeights',inverseFrequency)
%
layerf=pixelClassificationLayer("Name","Segmentation-Layer")
lgraph = layerGraph();
tempLayers = [
imageInputLayer([512/2 512/2 1],"Name","ImageInputLayer")
convolution2dLayer([4 4],64,"Name","Encoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-1-ReLU-1")
convolution2dLayer([4 4],64,"Name","Encoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-1-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
maxPooling2dLayer([2 2],"Name","Encoder-Stage-1-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],128,"Name","Encoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-2-ReLU-1")
convolution2dLayer([4 4],128,"Name","Encoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-2-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
maxPooling2dLayer([2 2],"Name","Encoder-Stage-2-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],256,"Name","Encoder-Stage-3-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-3-ReLU-1")
convolution2dLayer([4 4],256,"Name","Encoder-Stage-3-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-3-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
dropoutLayer(0.5,"Name","Encoder-Stage-3-DropOut")
maxPooling2dLayer([2 2],"Name","Encoder-Stage-3-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],512,"Name","Bridge-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Bridge-ReLU-1")
convolution2dLayer([4 4],512,"Name","Bridge-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Bridge-ReLU-2")
dropoutLayer(0.5,"Name","Bridge-DropOut")
transposedConv2dLayer([2 2],256,"Name","Decoder-Stage-1-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-1-DepthConcatenation")
convolution2dLayer([4 4],256,"Name","Decoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-ReLU-1")
convolution2dLayer([4 4],256,"Name","Decoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-ReLU-2")
transposedConv2dLayer([2 2],128,"Name","Decoder-Stage-2-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-2-DepthConcatenation")
convolution2dLayer([4 4],128,"Name","Decoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-ReLU-1")
convolution2dLayer([4 4],128,"Name","Decoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-ReLU-2")
transposedConv2dLayer([2 2],64,"Name","Decoder-Stage-3-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-3-DepthConcatenation")
convolution2dLayer([4 4],64,"Name","Decoder-Stage-3-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-ReLU-1")
convolution2dLayer([4 4],64,"Name","Decoder-Stage-3-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-ReLU-2")
convolution2dLayer([1 1],3,"Name","Final-ConvolutionLayer","Padding","same","WeightsInitializer","he")
softmaxLayer("Name","Softmax-Layer")
pixelClassificationLayer("Name","Segmentation-Layer")
];
lgraph = addLayers(lgraph,tempLayers);
% clean up helper variable
clear tempLayers;
lgraph = connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Encoder-Stage-1-MaxPool");
lgraph = connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Decoder-Stage-3-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Encoder-Stage-2-MaxPool");
lgraph = connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Decoder-Stage-2-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Encoder-Stage-3-ReLU-2","Encoder-Stage-3-DropOut");
lgraph = connectLayers(lgraph,"Encoder-Stage-3-ReLU-2","Decoder-Stage-1-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Decoder-Stage-1-UpReLU","Decoder-Stage-1-DepthConcatenation/in1");
lgraph = connectLayers(lgraph,"Decoder-Stage-2-UpReLU","Decoder-Stage-2-DepthConcatenation/in1");
lgraph = connectLayers(lgraph,"Decoder-Stage-3-UpReLU","Decoder-Stage-3-DepthConcatenation/in1");
% lgraph = connectLayers(lgraph,'relu12','skipConv1');
% lgraph = connectLayers(lgraph,'Encoder-Stage-2-Conv-2','add22/in2');
% lgraph = connectLayers(lgraph,'relu22','');
% Plot Layers
figure,plot(lgraph);
imageSize = [256 256 1];
numClasses = 2;
encoderDepth = 3;
lgraph = unetLayers(imageSize,numClasses,'EncoderDepth',encoderDepth)
% split data
[imdsTrain, imdsVal, imdsTest, pxdsTrain, pxdsVal, pxdsTest] = partitionCamVidData(imds,pxds);
pximds = pixelLabelImageDatastore(imdsTrain,pxdsTrain, ...
'DataAugmentation',augmenter);
pximdsVal = pixelLabelImageDatastore(imdsVal,pxdsVal);
options1 = trainingOptions('adam', ...
'InitialLearnRate',1e-3, ...
'MaxEpochs',100, ...
'LearnRateDropFactor',5e-1, ...
'LearnRateDropPeriod',10, ...
'ValidationData',pximdsVal,...
'LearnRateSchedule','piecewise', ...
'MiniBatchSize',4,'Plots','training-progress');
net1 = trainNetwork(pximds,lgraph,options1);
mohd akmal masud
2022 年 1 月 10 日
'partitionCamVidData' is used in Train and Deploy Fully Convolutional Networks for
Semantic Segmentation.
Got error
What is the meaning of this sir? Is it need to install?
mohd akmal masud
2022 年 1 月 10 日
I haved put this partionCamVidData.m as attached in same folder. But got error below
Error using partitionCamVidData
Too many output arguments.
yanqi liu
2022 年 1 月 10 日
yes,sir,can you upload zip file “I-131 SPECT NEMA VALIDATION 01112019 256X256 26.09.2021 petang”,so we can debug
mohd akmal masud
2022 年 1 月 10 日
yanqi liu
2022 年 1 月 11 日
%% first, read the image data and labelled images
clc
clear all; close all;
dataSetDir = fullfile('C:\Users\Akmal\Desktop\I-131 256 28.02.2020\I-131 SPECT NEMA VALIDATION 01112019 256X256 26.09.2021 petang');
imageDir = fullfile(dataSetDir,'Image');
labelDir = fullfile(dataSetDir,'PixelLabelData');
imds = imageDatastore(imageDir);
% view data set images origional
% figure
% for i = 1:23
% subplot(5,5,i)
% I = readimage(imds,i);
% imshow(I)
% title('training labels')
% end
%% train the data. if network already, then just drag it into command window
classNames = ["foreground" "background"];
labelIDs = [1 2];
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);
imds1 = imageDatastore(labelDir);
% figure
% for i = 1:5
% subplot(3,3,i)
% I = readimage(imds1,i);
% imshow(I)
% title('training labels')
% end
ds = pixelLabelImageDatastore(imds,pxds);
tbl = countEachLabel(pxds)
totalNumberOfPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / totalNumberOfPixels;
inverseFrequency = 1./frequency
% layerf = pixelClassificationLayer(...
% 'Classes',tbl.Name,'ClassWeights',inverseFrequency)
%
layerf=pixelClassificationLayer("Name","Segmentation-Layer")
lgraph = layerGraph();
tempLayers = [
imageInputLayer([512/2 512/2 1],"Name","ImageInputLayer")
convolution2dLayer([4 4],64,"Name","Encoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-1-ReLU-1")
convolution2dLayer([4 4],64,"Name","Encoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-1-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
maxPooling2dLayer([2 2],"Name","Encoder-Stage-1-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],128,"Name","Encoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-2-ReLU-1")
convolution2dLayer([4 4],128,"Name","Encoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-2-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
maxPooling2dLayer([2 2],"Name","Encoder-Stage-2-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],256,"Name","Encoder-Stage-3-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-3-ReLU-1")
convolution2dLayer([4 4],256,"Name","Encoder-Stage-3-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-3-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
dropoutLayer(0.5,"Name","Encoder-Stage-3-DropOut")
maxPooling2dLayer([2 2],"Name","Encoder-Stage-3-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],512,"Name","Bridge-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Bridge-ReLU-1")
convolution2dLayer([4 4],512,"Name","Bridge-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Bridge-ReLU-2")
dropoutLayer(0.5,"Name","Bridge-DropOut")
transposedConv2dLayer([2 2],256,"Name","Decoder-Stage-1-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-1-DepthConcatenation")
convolution2dLayer([4 4],256,"Name","Decoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-ReLU-1")
convolution2dLayer([4 4],256,"Name","Decoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-ReLU-2")
transposedConv2dLayer([2 2],128,"Name","Decoder-Stage-2-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-2-DepthConcatenation")
convolution2dLayer([4 4],128,"Name","Decoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-ReLU-1")
convolution2dLayer([4 4],128,"Name","Decoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-ReLU-2")
transposedConv2dLayer([2 2],64,"Name","Decoder-Stage-3-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-3-DepthConcatenation")
convolution2dLayer([4 4],64,"Name","Decoder-Stage-3-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-ReLU-1")
convolution2dLayer([4 4],64,"Name","Decoder-Stage-3-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-ReLU-2")
convolution2dLayer([1 1],3,"Name","Final-ConvolutionLayer","Padding","same","WeightsInitializer","he")
softmaxLayer("Name","Softmax-Layer")
pixelClassificationLayer("Name","Segmentation-Layer")
];
lgraph = addLayers(lgraph,tempLayers);
% clean up helper variable
clear tempLayers;
lgraph = connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Encoder-Stage-1-MaxPool");
lgraph = connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Decoder-Stage-3-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Encoder-Stage-2-MaxPool");
lgraph = connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Decoder-Stage-2-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Encoder-Stage-3-ReLU-2","Encoder-Stage-3-DropOut");
lgraph = connectLayers(lgraph,"Encoder-Stage-3-ReLU-2","Decoder-Stage-1-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Decoder-Stage-1-UpReLU","Decoder-Stage-1-DepthConcatenation/in1");
lgraph = connectLayers(lgraph,"Decoder-Stage-2-UpReLU","Decoder-Stage-2-DepthConcatenation/in1");
lgraph = connectLayers(lgraph,"Decoder-Stage-3-UpReLU","Decoder-Stage-3-DepthConcatenation/in1");
% lgraph = connectLayers(lgraph,'relu12','skipConv1');
% lgraph = connectLayers(lgraph,'Encoder-Stage-2-Conv-2','add22/in2');
% lgraph = connectLayers(lgraph,'relu22','');
% Plot Layers
figure,plot(lgraph);
imageSize = [256 256 1];
numClasses = 2;
encoderDepth = 3;
lgraph = unetLayers(imageSize,numClasses,'EncoderDepth',encoderDepth)
% split data
[imdsTrain, imdsVal, pxdsTrain, pxdsVal] = partitionCamVidData2(imds,pxds);
pximds = pixelLabelImageDatastore(imdsTrain,pxdsTrain);
pximdsVal = pixelLabelImageDatastore(imdsVal,pxdsVal);
options1 = trainingOptions('adam', ...
'InitialLearnRate',1e-3, ...
'MaxEpochs',100, ...
'LearnRateDropFactor',5e-1, ...
'LearnRateDropPeriod',10, ...
'ValidationData',pximdsVal,...
'ValidationFrequency',3, ...
'LearnRateSchedule','piecewise', ...
'MiniBatchSize',4,'Plots','training-progress');
net1 = trainNetwork(pximds,lgraph,options1);
function [imdsTrain, imdsTest, pxdsTrain, pxdsTest] = partitionCamVidData2(imds,pxds)
% Partition CamVid data by randomly selecting 60% of the data for training. The
% rest is used for testing.
% Set initial random state for example reproducibility.
rng(0);
numFiles = numel(imds.Files);
shuffledIndices = randperm(numFiles);
% Use 60% of the images for training.
N = round(0.60 * numFiles);
trainingIdx = shuffledIndices(1:N);
% Use the rest for testing.
testIdx = shuffledIndices(N+1:end);
% Create image datastores for training and test.
trainingImages = imds.Files(trainingIdx);
testImages = imds.Files(testIdx);
imdsTrain = imageDatastore(trainingImages);
imdsTest = imageDatastore(testImages);
% Extract class and label IDs info.
classes = pxds.ClassNames;
labelIDs = 1:numel(pxds.ClassNames);
% Create pixel label datastores for training and test.
trainingLabels = pxds.Files(trainingIdx);
testLabels = pxds.Files(testIdx);
pxdsTrain = pixelLabelDatastore(trainingLabels, classes, labelIDs);
pxdsTest = pixelLabelDatastore(testLabels, classes, labelIDs);
end
mohd akmal masud
2022 年 1 月 11 日
Hi sir. Thank you very much for coding validation.
The trained completed. But got some error
function [imdsTrain, imdsTest, pxdsTrain, pxdsTest] = partitionCamVidData2(imds,pxds)
↑
Error: Function definition are not supported in this context. Functions can only be
created as local or nested functions in code files.
Actually what is the meaning of this?
mohd akmal masud
2022 年 5 月 29 日
Dear yanqi,
can help me how to Compare Ground Truth Against Network Prediction
%% first, read the image data and labelled images
clc
clear all; close all;
dataSetDir = fullfile('C:\Users\Akmal\Desktop\I-131 256 28.02.2020\I-131 SPECT NEMA VALIDATION 01112019 256X256 26.09.2021 petang');
imageDir = fullfile(dataSetDir,'Image');
labelDir = fullfile(dataSetDir,'PixelLabelData');
imds = imageDatastore(imageDir);
% view data set images origional
% figure
% for i = 1:23
% subplot(5,5,i)
% I = readimage(imds,i);
% imshow(I)
% title('training labels')
% end
%% train the data. if network already, then just drag it into command window
classNames = ["foreground" "background"];
labelIDs = [1 2];
pxds = pixelLabelDatastore(labelDir, classNames, labelIDs);
imds1 = imageDatastore(labelDir);
% figure
% for i = 1:5
% subplot(3,3,i)
% I = readimage(imds1,i);
% imshow(I)
% title('training labels')
% end
ds = pixelLabelImageDatastore(imds,pxds);
tbl = countEachLabel(pxds)
totalNumberOfPixels = sum(tbl.PixelCount);
frequency = tbl.PixelCount / totalNumberOfPixels;
inverseFrequency = 1./frequency
% layerf = pixelClassificationLayer(...
% 'Classes',tbl.Name,'ClassWeights',inverseFrequency)
%
layerf=pixelClassificationLayer("Name","Segmentation-Layer")
lgraph = layerGraph();
tempLayers = [
imageInputLayer([512/2 512/2 1],"Name","ImageInputLayer")
convolution2dLayer([4 4],64,"Name","Encoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-1-ReLU-1")
convolution2dLayer([4 4],64,"Name","Encoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-1-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
maxPooling2dLayer([2 2],"Name","Encoder-Stage-1-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],128,"Name","Encoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-2-ReLU-1")
convolution2dLayer([4 4],128,"Name","Encoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-2-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
maxPooling2dLayer([2 2],"Name","Encoder-Stage-2-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],256,"Name","Encoder-Stage-3-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-3-ReLU-1")
convolution2dLayer([4 4],256,"Name","Encoder-Stage-3-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Encoder-Stage-3-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
dropoutLayer(0.5,"Name","Encoder-Stage-3-DropOut")
maxPooling2dLayer([2 2],"Name","Encoder-Stage-3-MaxPool","Stride",[4 4])
convolution2dLayer([4 4],512,"Name","Bridge-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Bridge-ReLU-1")
convolution2dLayer([4 4],512,"Name","Bridge-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Bridge-ReLU-2")
dropoutLayer(0.5,"Name","Bridge-DropOut")
transposedConv2dLayer([2 2],256,"Name","Decoder-Stage-1-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-1-DepthConcatenation")
convolution2dLayer([4 4],256,"Name","Decoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-ReLU-1")
convolution2dLayer([4 4],256,"Name","Decoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-1-ReLU-2")
transposedConv2dLayer([2 2],128,"Name","Decoder-Stage-2-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-2-DepthConcatenation")
convolution2dLayer([4 4],128,"Name","Decoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-ReLU-1")
convolution2dLayer([4 4],128,"Name","Decoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-2-ReLU-2")
transposedConv2dLayer([2 2],64,"Name","Decoder-Stage-3-UpConv","BiasLearnRateFactor",2,"Stride",[4 4],"WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-UpReLU")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
depthConcatenationLayer(2,"Name","Decoder-Stage-3-DepthConcatenation")
convolution2dLayer([4 4],64,"Name","Decoder-Stage-3-Conv-1","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-ReLU-1")
convolution2dLayer([4 4],64,"Name","Decoder-Stage-3-Conv-2","Padding","same","WeightsInitializer","he")
reluLayer("Name","Decoder-Stage-3-ReLU-2")
convolution2dLayer([1 1],3,"Name","Final-ConvolutionLayer","Padding","same","WeightsInitializer","he")
softmaxLayer("Name","Softmax-Layer")
pixelClassificationLayer("Name","Segmentation-Layer")
];
lgraph = addLayers(lgraph,tempLayers);
% clean up helper variable
clear tempLayers;
lgraph = connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Encoder-Stage-1-MaxPool");
lgraph = connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Decoder-Stage-3-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Encoder-Stage-2-MaxPool");
lgraph = connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Decoder-Stage-2-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Encoder-Stage-3-ReLU-2","Encoder-Stage-3-DropOut");
lgraph = connectLayers(lgraph,"Encoder-Stage-3-ReLU-2","Decoder-Stage-1-DepthConcatenation/in2");
lgraph = connectLayers(lgraph,"Decoder-Stage-1-UpReLU","Decoder-Stage-1-DepthConcatenation/in1");
lgraph = connectLayers(lgraph,"Decoder-Stage-2-UpReLU","Decoder-Stage-2-DepthConcatenation/in1");
lgraph = connectLayers(lgraph,"Decoder-Stage-3-UpReLU","Decoder-Stage-3-DepthConcatenation/in1");
% lgraph = connectLayers(lgraph,'relu12','skipConv1');
% lgraph = connectLayers(lgraph,'Encoder-Stage-2-Conv-2','add22/in2');
% lgraph = connectLayers(lgraph,'relu22','');
% Plot Layers
figure,plot(lgraph);
imageSize = [256 256 1];
numClasses = 2;
encoderDepth = 3;
lgraph = unetLayers(imageSize,numClasses,'EncoderDepth',encoderDepth)
% split data
[imdsTrain, imdsVal, pxdsTrain, pxdsVal] = partitionCamVidData2(imds,pxds);
pximds = pixelLabelImageDatastore(imdsTrain,pxdsTrain);
pximdsVal = pixelLabelImageDatastore(imdsVal,pxdsVal);
options1 = trainingOptions('adam', ...
'InitialLearnRate',1e-3, ...
'MaxEpochs',100, ...
'LearnRateDropFactor',5e-1, ...
'LearnRateDropPeriod',10, ...
'ValidationData',pximdsVal,...
'ValidationFrequency',3, ...
'LearnRateSchedule','piecewise', ...
'MiniBatchSize',4,'Plots','training-progress');
net1 = trainNetwork(pximds,lgraph,options1);
function [imdsTrain, imdsTest, pxdsTrain, pxdsTest] = partitionCamVidData2(imds,pxds)
% Partition CamVid data by randomly selecting 60% of the data for training. The
% rest is used for testing.
% Set initial random state for example reproducibility.
rng(0);
numFiles = numel(imds.Files);
shuffledIndices = randperm(numFiles);
% Use 60% of the images for training.
N = round(0.60 * numFiles);
trainingIdx = shuffledIndices(1:N);
% Use the rest for testing.
testIdx = shuffledIndices(N+1:end);
% Create image datastores for training and test.
trainingImages = imds.Files(trainingIdx);
testImages = imds.Files(testIdx);
imdsTrain = imageDatastore(trainingImages);
imdsTest = imageDatastore(testImages);
% Extract class and label IDs info.
classes = pxds.ClassNames;
labelIDs = 1:numel(pxds.ClassNames);
% Create pixel label datastores for training and test.
trainingLabels = pxds.Files(trainingIdx);
testLabels = pxds.Files(testIdx);
pxdsTrain = pixelLabelDatastore(trainingLabels, classes, labelIDs);
pxdsTest = pixelLabelDatastore(testLabels, classes, labelIDs);
end
その他の回答 (0 件)
参考
タグ
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!エラーが発生しました
ページに変更が加えられたため、アクションを完了できません。ページを再度読み込み、更新された状態を確認してください。
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)