roots of 3*3 matrix determinant

3 ビュー (過去 30 日間)
Cem Eren Aslan
Cem Eren Aslan 2022 年 1 月 5 日
編集済み: David Goodmanson 2022 年 1 月 8 日
Hello all,
I have a matrix as follows;
M = [k(1,1)-12*w k(1,2) k(1,3);k(2,1) k(2,2)-2*w k(2,3);k(3,1) k(3,2) k(3,3)-4*w ];
i want to solve and to find three roots of det(M)=0
how can i solve this?
thanks
  3 件のコメント
Cem Eren Aslan
Cem Eren Aslan 2022 年 1 月 5 日
Yes, i have, but result is as follows;
root(z^3 - (131891655112916159*z^2)/26388279066624 + (692241875910773148691733542859037*z)/309485009821345068724781056 - 5152005758176027364447462631233389326948016877/42535295865117307932921825928971026432, z, 1)
Walter Roberson
Walter Roberson 2022 年 1 月 5 日
solve(det(M), 'maxdegree', 3)

サインインしてコメントする。

採用された回答

David Goodmanson
David Goodmanson 2022 年 1 月 6 日
編集済み: David Goodmanson 2022 年 1 月 8 日
Hi Cern,
I assume you mean the three values of w that give a 0 determinant. Eig works for this.
K = rand(3,3)
c = diag([12 2 4]); % the three coefficients of w down the diagonal
Knew = inv(c)*K % multiply the first row of K by 1/12, second row by 1/2, etc.
w = eig(Knew) % roots
% check, should be small; they are.
det(K-w(1)*c)
det(K-w(2)*c)
det(K-w(3)*c)
K =
0.4169 0.3829 0.3334
0.3801 0.0297 0.9758
0.2133 0.4723 0.5554
Knew =
0.0347 0.0319 0.0278
0.1901 0.0148 0.4879
0.0533 0.1181 0.1389
w =
0.3447
0.0218
-0.1781
In practice, for larger matrices one would use c\K instead of inv(c)*K but the latter expression seems clearer in these circumstances.

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by