fitcecoc with specified Box Contraint and Kernel Scale

3 ビュー (過去 30 日間)
Dylan den Hartog
Dylan den Hartog 2022 年 1 月 4 日
Hello,
I want to create an SVM model for multiclass classification, with specified hyperparameters: BoxContraint = 500 and KernelScale = 0.01
I triend using:
cvpt = cvpartition(Y_train, "kFold", 5);
fitcecoc(X_train,"class", "CVPartition",cvpt, "Coding","onevsone", "BoxContraint", 500, "KernelScale", 0.01)
I get the following error:
Error in classreg.learning.FitTemplate.make (line 124)
temp = fillIfNeeded(temp,type);
Error in classreg.learning.FitTemplate/fillIfNeeded (line 448)
classreg.learning.FitTemplate.make(this.Method,'type',this.Type,...
Error in classreg.learning.FitTemplate.make (line 124)
temp = fillIfNeeded(temp,type);
Error in ClassificationECOC.template (line 111)
temp = classreg.learning.FitTemplate.make('ECOC','type','classification',varargin{:});
Error in ClassificationECOC.fit (line 115)
temp = ClassificationECOC.template(varargin{:});
Error in fitcecoc (line 339)
obj = ClassificationECOC.fit(X,Y,ecocArgs{:});

回答 (0 件)

カテゴリ

Help Center および File ExchangeClassification Ensembles についてさらに検索

製品


リリース

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by