Quadratic Optimization for 4D in for Loop
2 ビュー (過去 30 日間)
古いコメントを表示
I need to find the roots (complex in nature) of an objective function in 4D by using quadratic optimization for the function below:
a = [0.0068 0.0036 0.000299 0.0151]; b = [0.0086 0.00453 0.0016 0.00872]
f = @(xj,xk) a(i) - (x(j)*x(k)) * b(l); %i,j,k,l = 1:4 - simple eqn: f = @(x1,x2) a(1) - (x(2)*x(3)) * b(4)
The problem that I have is that I don't know how to write it in a for loop or permutation manner that each loop takes a specific value of the (a,b) and (xj,xk) from 1:4. Basically it's a nonlinear coordinate transformation. Since my X(i) * X(j) makes the problem quadratic, I need to perform an approximation using the only equality constraint such (imposing the symmetry of the potential function - (i,j) and (k,l) pair become exchangeable):
(x(j)*x(k)) * b(l) + (x(i)*x(l)) * b(k) + (x(k)*x(j)) * b(j) + (x(l)*x(i)) * b(i) =< a(i) + a(j) + a(k) + a(l)
That's my only constraint for optimization that minimizes the objective function. I tried using fmincon but I don't know how to use it in a loop for the equation and the constraint.
I'd appreciate it if someone can help me! Thank you!
1 件のコメント
yanqi liu
2021 年 12 月 31 日
yes,sir,may be write the equations,and we can use loop to generate cmd string,then use eval to get function handle
採用された回答
yanqi liu
2021 年 12 月 31 日
clc; clear all; close all;
a = [0.0068 0.0036 0.000299 0.0151];
b = [0.0086 0.00453 0.0016 0.00872];
% f = @(xj,xk) a(i) - (x(j)*x(k)) * b(l); %i,j,k,l = 1:4 - simple eqn: f = @(x1,x2) a(1) - (x(2)*x(3)) * b(4)
for i = 1 : length(a)
eqi = sprintf('f=@(x1,x2) %f- (x(1)*x(2))*%f;', a(i), b(i));
disp(eqi)
end
2 件のコメント
yanqi liu
2022 年 1 月 1 日
yes,sir,may be it is non-linear optimization,use fmincon to get compute,may be write your equations in handwriting,we can make some debug
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!