augmentation of pretrained network reducing accuracy
3 ビュー (過去 30 日間)
古いコメントを表示
Hi, image augmentation using pretrained network is reducing accuracy of network. The file 1060.png is with dataaugmentation which reducces the accuracy as compared to 1061.png which has better accuracy without dataaugmentation.
what can be the reason, I read that augmentation increases accuracy.
0 件のコメント
採用された回答
Chunru
2021 年 12 月 30 日
Generally speaking, training with data augmentation will lead to poorer traing accuracy, since the model needs to fit more training data. Data augmentation acts as a regularize and helps reduce overfitting. Therefore, it generally produce better generalization result. If you have different test/validation dataset, it usually improve the test/validation accuracy instead of training accuracy (as you have shown in the attached figure). Try to include some test/validation data in your training to see if the test/validation accuracy improves with data augumentation.
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Deep Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!