Solving a system of ODEs whose coefficients are piecewise functions
1 回表示 (過去 30 日間)
古いコメントを表示
I try to plot the solution of a system of ODE, on [-10,10], for the initial data [0.001 0.001], using the function:
function dwdt=systode(t,w)
if 0< t<1
f = t*(3-2*t);
if -1<t< 0
f=t*(3+2*t);
else
f = 1/t;
end;
if 0< t <1
h=4*t^4-12*t^3+9*t^2-4*t+3;
if -1< t < 0
h=4*t^4+12*t^3+9*t^2+4*t+3;
else
h=0;
end;
beta=0.5+exp(-abs(t));
dwdt=zeros(2,1);
dwdt(1)=-f*w(1)+w(2);
dwdt(2)=-beta*w(1)-f*w(2)+h*w(1)-f*w(1)^2;
end
The coefficients f(t) and g(t) are piecewise functions as follows.

With the commands
tspan = [-10 10];
z0=[0.001 0.001];
[t,z] = ode45(@(t,z) systode(t,z), tspan, z0);
figure
plot(t,z(:,1),'r');
I get the message
tspan = [-10 10];
↑
Error: Invalid use of operator.
Where could be the mistake? I am also not sure that I defined correctly the functions f, h, β.
0 件のコメント
採用された回答
Torsten
2021 年 12 月 28 日
function main
T = [];
Z = [];
z0=[0.001 0.001];
tspan1 = [-10 -1];
iflag = 1;
[t,z] = ode45(@(t,z) systode(t,z,iflag), tspan1, z0);
T = vertcat(T,t);
Z = vertcat(Z,z);
tspan2 = [-1 0];
iflag = 2;
z0 = [z(end,1) z(end,2)];
[t,z] = ode45(@(t,z) systode(t,z,iflag), tspan2, z0);
T = vertcat(T,t);
Z = vertcat(Z,z);
tspan3 = [0 1];
iflag = 3;
z0 = [z(end,1) z(end,2)];
[t,z] = ode45(@(t,z) systode(t,z,iflag), tspan3, z0);
T = vertcat(T,t);
Z = vertcat(Z,z);
tspan4 = [1 10];
iflag = 4;
z0 = [z(end,1) z(end,2)];
[t,z] = ode45(@(t,z) systode(t,z,iflag), tspan4, z0);
T = vertcat(T,t);
Z = vertcat(Z,z);
figure
plot(T,Z(:,1),'r');
end
function dwdt = systode(t,w,iflag)
if iflag == 1
f = 1/t;
h = 0;
beta=0.5+exp(t);
elseif iflag == 2
f = t*(3+2*t);
h = 4*t^4+12*t^3+9*t^2+4*t+3;
beta=0.5+exp(t);
elseif iflag == 3
f = t*(3-2*t);
h = 4*t^4-12*t^3+9*t^2-4*t+3;
beta=0.5+exp(-t);
elseif iflag == 4
f = 1/t;
h = 0;
beta = 0.5+exp(-t);
end
dwdt=zeros(2,1);
dwdt(1)=-f*w(1)+w(2);
dwdt(2)=-beta*w(1)-f*w(2)+h*w(1)-f*w(1)^2;
end
3 件のコメント
Torsten
2021 年 12 月 28 日
Put the code in a file, name it main.m and load it into MATLAB. Run it and the first function will be plotted in the interval [-10:10]. The command is
figure
plot(T,Z(:,1),'r');
その他の回答 (2 件)
Sam Chak
2024 年 6 月 21 日
Hi @Dehua Kang
The red curve in your image is
and the green curve is
. Below is another demo, with the data from the piecewise smooth functions
and
can be easily obtained from the spreadsheet (Google Sheets or MS Excel).




%% Piecewise smooth functions (in data form)
tpw = linspace(-10, 10, 201);
fpw = [-1/10, -10/99, -5/49, -10/97, -5/48, -2/19, -5/47, -10/93, -5/46, -10/91, -1/9, -10/89, -5/44, -10/87, -5/43, -2/17, -5/42, -10/83, -5/41, -10/81, -1/8, -10/79, -5/39, -10/77, -5/38, -2/15, -5/37, -10/73, -5/36, -10/71, -1/7, -10/69, -5/34, -10/67, -5/33, -2/13, -5/32, -10/63, -5/31, -10/61, -1/6, -10/59, -5/29, -10/57, -5/28, -2/11, -5/27, -10/53, -5/26, -10/51, -1/5, -10/49, -5/24, -10/47, -5/23, -2/9, -5/22, -10/43, -5/21, -10/41, -1/4, -10/39, -5/19, -10/37, -5/18, -2/7, -5/17, -10/33, -5/16, -10/31, -1/3, -10/29, -5/14, -10/27, -5/13, -2/5, -5/12, -10/23, -5/11, -10/21, -1/2, -10/19, -5/9, -10/17, -5/8, -2/3, -5/7, -10/13, -5/6, -10/11, -1, -27/25, -28/25, -28/25, -27/25, -1, -22/25, -18/25, -13/25, -7/25, 0, 7/25, 13/25, 18/25, 22/25, 1, 27/25, 28/25, 28/25, 27/25, 1, 10/11, 5/6, 10/13, 5/7, 2/3, 5/8, 10/17, 5/9, 10/19, 1/2, 10/21, 5/11, 10/23, 5/12, 2/5, 5/13, 10/27, 5/14, 10/29, 1/3, 10/31, 5/16, 10/33, 5/17, 2/7, 5/18, 10/37, 5/19, 10/39, 1/4, 10/41, 5/21, 10/43, 5/22, 2/9, 5/23, 10/47, 5/24, 10/49, 1/5, 10/51, 5/26, 10/53, 5/27, 2/11, 5/28, 10/57, 5/29, 10/59, 1/6, 10/61, 5/31, 10/63, 5/32, 2/13, 5/33, 10/67, 5/34, 10/69, 1/7, 10/71, 5/36, 10/73, 5/37, 2/15, 5/38, 10/77, 5/39, 10/79, 1/8, 10/81, 5/41, 10/83, 5/42, 2/17, 5/43, 10/87, 5/44, 10/89, 1/9, 10/91, 5/46, 10/93, 5/47, 2/19, 5/48, 10/97, 5/49, 10/99, 1/10];
hpw = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 354/625, 659/625, 909/625, 1104/625, 2, 1359/625, 1449/625, 1544/625, 1674/625, 3, 1674/625, 1544/625, 1449/625, 1359/625, 2, 1104/625, 909/625, 659/625, 354/625, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
plot(tpw, fpw), grid on, xlabel('t'), title('Piecewise function, f(t)')
plot(tpw, hpw), grid on, xlabel('t'), title('Piecewise function, h(t)')
%% Solving the ODEs
tspan = [-10 10];
w0 = [0.001 0.001];
sol = ode45(@(t, w) ode(t, w, tpw, fpw, hpw), tspan, w0);
t = linspace(-10, 10, 2001);
[w, wp] = deval(sol, t); % wp is w-prime (w') = dw/dt
plot(t, w(1,:)), grid on, xlabel('t'), title('Solution, w_{1}(t)')
plot(t, wp(1,:)), grid on, xlabel('t'), title('Derivative, dw_{1}/dt')
%% ODEs
function dwdt = ode(t, w, tpw, fpw, hpw)
f = interp1(tpw, fpw, t); % interpolated piecewise function f(t)
h = interp1(tpw, hpw, t); % interpolated piecewise function h(t)
beta = 0.5 + exp(- abs(t));
dwdt = zeros(2, 1);
dwdt(1) = - f*w(1) + w(2);
dwdt(2) = - beta*w(1) - f*w(2) + h*w(1) - f*w(1)^2;
end
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!