how to generate ellipsoid in n=4

2 ビュー (過去 30 日間)
imola
imola 2014 年 11 月 7 日
編集済み: imola 2015 年 2 月 17 日
Dear All,
I want to generate ellipsoid in dimensions n=4,
Regards, Imola

採用された回答

Matt J
Matt J 2014 年 11 月 7 日
For any NxN positive definite matrix, A
x.'*A*x=1
is an implicit equation for an N-dimensional ellipsoid.
  2 件のコメント
imola
imola 2014 年 11 月 7 日
編集済み: imola 2015 年 2 月 17 日
Dear Matt,
Thanks for replying, the equation
(x-v).'*A*(x-v)=1
is general formula., it is written in Wikipedia that The parameters may be interpreted as spherical coordinates. and when I search for the last I found that we can find the spherical coordinates as follow
X1=r*cos(t1)
X2=r*sin(t1)cos(t2)
X3=r*sin(t1)sin(t2)cos(t3)
.
.
.
Xn-1=r*sin(t1)...sin(tn-2)cos(tn-1)
Xn=r*sin(t1)...sin(tn-2)sin(tn-1)
I really hope you agree with me it true, that will save me.
regards,
Imola
Matt J
Matt J 2014 年 11 月 8 日
編集済み: Matt J 2014 年 11 月 8 日
so can I use them as parameters for the ellipsoid in higher dimensions but I just change the radius
You can if the ellipsoid is unrotated/translated. The equation for an unrotated ellipsoid centered at the origin is
sum (X(i)/e(i)).^2=1
You can see by direct substitution that the equation will be satisfied by an X of the form
X(1)=e(1)*cos(t1)
X(2)=e(2)*sin(t1)cos(t2)
X(3)=e(3)*sin(t1)sin(t2)cos(t3)
.
.
.
X(n-1)=e(n-1)*sin(t1)...sin(tn-2)cos(tn-1)
X(n)=e(n)*sin(t1)...sin(tn-2)sin(tn-1)
If the ellipsoid is rototranslated, you must apply a further transformation to X,
X'=R*X+t.
where R is an NxN orthogonal matrix and t a translation vector.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeMathematics についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by