why get different values when matlab also use maple for calculation?. Maple vs Matlab??
3 ビュー (過去 30 日間)
古いコメントを表示
Hi, I have this problem where the maple show very small result but matlab show very large value. I have written the code in Maple and Matlab. I'm working on this from last 4 days and didn't find any result, why this is happening.
Thank you in advance and please share if you know the reason behind this difference.
n,m,omega1 are real numbers n>m, n and m are integer, omega>0, n=m+2, and m is any odd no.s greater then 2.
%%%%%% MATLAB CODE
clc; clear; close;
n=5;m=3;omega1=500;
fun_matlab=(omega1*gamma(n/2)*gamma(m/2 + 1)*hypergeom(m/2 + 1, [3/2, 1 - n/2], omega1^2/4))/(2*gamma(m/2 + n/2 + 1)) + (omega1*omega1^n*pi^(1/2)*gamma(-n/2)*hypergeom(m/2 + n/2 + 1, [n/2 + 1, n/2 + 3/2], omega1^2/4))/(4*2^n*gamma(n/2 + 3/2));
fun_matlab = 6.575169876935467e+209
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% MAPLE CODE
restart; Digits:=500: n:=5: m:=3: omega1:=500:
Fun_maple:=evalf((omega1*GAMMA(n/2)*GAMMA(m/2 + 1)*hypergeom([m/2 + 1], [3/2, 1 - n/2], omega1^2/4))/(2*GAMMA(m/2 + n/2 + 1)) + (omega1*omega1^n*Pi^(1/2)*GAMMA(-n/2)*hypergeom([m/2 + n/2 + 1], [n/2 + 1, n/2 + 3/2], omega1^2/4))/(4*2^n*GAMMA(n/2 + 3/2)));
Fun_maple := -1.81414220781335980673653067232748014592172464361706594606931258364*10^(-209)
2 件のコメント
回答 (1 件)
Walter Roberson
2021 年 12 月 24 日
fun_matlab=(omega1*gamma(n/2)*gamma(m/2 + 1)*hypergeom(m/2 + 1, [3/2, 1 - n/2], omega1^2/4))/(2*gamma(m/2 + n/2 + 1)) + (omega1*omega1^n*pi^(1/2)*gamma(-n/2)*hypergeom(m/2 + n/2 + 1, [n/2 + 1, n/2 + 3/2], omega1^2/4))/(4*2^n*gamma(n/2 + 3/2));
n and m are double precision. omega is double precision. The gamma() calls are being evaluated at double precision, and your hypergeom() calls are being evaluated at double precision. Double precision is not accurate enough for your purposes.
3 件のコメント
Walter Roberson
2021 年 12 月 24 日
編集済み: Walter Roberson
2021 年 12 月 24 日
sqrt(pi) was also a problem.
n = sym(5); m = sym(3); omega1 = sym(500);
Pi = sym(pi);
fun_matlab = (omega1*gamma(n/2)*gamma(m/2 + 1)*hypergeom(m/2 + 1, [3/2, 1 - n/2], omega1^2/4))/(2*gamma(m/2 + n/2 + 1)) + (omega1*omega1^n*Pi^(1/2)*gamma(-n/2)*hypergeom(m/2 + n/2 + 1, [n/2 + 1, n/2 + 3/2], omega1^2/4))/(4*2^n*gamma(n/2 + 3/2));
string(fun_matlab)
double(vpa(fun_matlab,500))
But if your question is whether it can be done in double precision in MATLAB, then I doubt it. The calculation involves cosh(500) and sinh(500) which are about 10^216 and differ by about 10^-218 so you would need more than 434 digits of precision.
John D'Errico
2021 年 12 月 24 日
編集済み: John D'Errico
2021 年 12 月 24 日
Even if you use the symbolic toolbox, with everything in sym form, a large value is still produced, not the infinitessimally small one apparently produced from Maple.
n=sym(5);m=sym(3);omega1=sym(500);
digits 5000
fun_matlab=(omega1*gamma(n/2)*gamma(m/2 + 1)*hypergeom(m/2 + 1, [3/2, 1 - n/2], omega1^2/4))/(2*gamma(m/2 + n/2 + 1)) + (omega1*omega1^n*pi^(1/2)*gamma(-n/2)*hypergeom(m/2 + n/2 + 1, [n/2 + 1, n/2 + 3/2], omega1^2/4))/(4*2^n*gamma(n/2 + 3/2));
vpa(fun_matlab)
double(fun_matlab)
It is different from that which MATLAB produced without the aid of syms though.
参考
カテゴリ
Help Center および File Exchange で Numbers and Precision についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!