- The algorithm begins by determining the initial likelihoods for each state, based on the first observation.
- For each subsequent observation, the algorithm calculates the probability of being in each state by using the new observation and the previous state probabilities.
HMM viterbi algorithm linked to values
3 ビュー (過去 30 日間)
古いコメントを表示
Hi all,
I have used the HMM toolbox, using 4 states (Each states can take numbers from 1 to 6).
Then I apply the viterbi algortihm and find the optimum path of states. However, my question is:
How then the viterbi states of a given sequence are linked to certain values? here are the input data
A=[0.6 0.2 0.1 0.1;0.1 0.6 0.15 0.15; 0.15 0.15 0.6 0.1; 0.1 0.1 0.25 0.55]; %transition matrix
emis = [0.025 0.135 0.34 0.34 0.135 0.025;0.025 0.135 0.34 0.34 0.135 0.025;0.025 0.135 0.34 0.34 0.135 0.025;0.025 0.135 0.34 0.34 0.135 0.025]; %emission matrix, probabilities follow gaussian distribution (six bins of probabilities)
Initial_vales= [ 0.25 0.32 0.58 0.42 ..0.8]; %initial data given (24*20), range from 0.1 to 1.8!
%states_1= 0-0.25
%state_2=0.25-0.50
%state_2=0.5-0.75
%state_4=>0.75
thanks in advance,
Nikolas
0 件のコメント
回答 (1 件)
Aneela
2024 年 2 月 16 日
Hi Nikolas Spiliopoulos,
The Viterbi algorithm generates the most likely sequence of the hidden states (Viterbi States) in “HMM (Hidden Markov Models)”.
The Viterbi states of a given sequence are linked to the certain values through the emission probabilities of the observed value and the transition probabilities from the previous state.
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Error Detection and Correction についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!