Training Network stopping automatically after 3 iteration without showing any error.
31 ビュー (過去 30 日間)
表示 古いコメント

tspan = 0:0.001:10;
y0 = 0;
[t,y] = ode45(@(t,y) t^2+2, tspan, y0);
T=t(1:0.9*end)
Y=y(1:0.9*end)
x=t(0.9*end+1:end)
v=y(1+0.9*end:end)
layer = functionLayer((@(X) X./(1 -X^2)))
layers = [
sequenceInputLayer(1)
fullyConnectedLayer(1)
tanhLayer
functionLayer(((@(t) t./(1 -t.^2))),Description="softsign")
fullyConnectedLayer(1)
tanhLayer
functionLayer(((@(t) t./(1 -t.^2))),Description="softsign")
regressionLayer]
options = trainingOptions('adam', ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.2, ...
'LearnRateDropPeriod',5, ...
'miniBatchSize',20,.....
'VerboseFrequency',1,...
'ValidationPatience',Inf,...
'MaxEpochs',100, ...
'Plots','training-progress')
net = trainNetwork(T',Y',layers,options);
ypre=predict(net,tspan);
plot(ypre)
plot(y)
0 件のコメント
回答 (1 件)
Prateek Rai
2022 年 2 月 22 日
Hi,
Training of the network stopped because training loss is NaN. This implies that the predictions using the output network might contain NaN values.
On analyzing network, I found that size of the all the layers is 1*1*1 which is why NaN values are coming.
You might want to recheck the dimension of the layers of the network using:
analyzeNetwork(layers)
1 件のコメント
Image Analyst
2022 年 4 月 5 日
I get the same error trying to train on 448 images and my layers are not 1*1*1 -- they're 227x227x3

参考
カテゴリ
Find more on Sequence and Numeric Feature Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!