How do I create and plot a confusion matrix for my trained convolutional neural network?
20 ビュー (過去 30 日間)
古いコメントを表示
I can't seem to create a confusion matrix for my validation accuracy outcome of my trained convolutional neural network. Below is the code I am using, and thanks in advance for any help!
-----------------------------------------------------------------------------------
clear
rng('shuffle')
outputFolder = fullfile('D:\Large_grains\Training_set');
trainDigitData = imageDatastore(outputFolder,'IncludeSubfolders',true,'LabelSource','foldernames');
outputFolder = fullfile('D:\Large_grains\Validation_set');
testDigitData = imageDatastore(outputFolder,'IncludeSubfolders',true,'LabelSource','foldernames');
inputSize = [224 224 3];
augimdsTrain = augmentedImageDatastore(inputSize,trainDigitData,'ColorPreprocessing','gray2rgb');
augimdsValidation = augmentedImageDatastore(inputSize,testDigitData,'ColorPreprocessing','gray2rgb');
numClasses = 9;
problem2; % load ResNet-18
miniBatchSize = 32;
validationFrequency = floor(numel(trainDigitData.Labels)/miniBatchSize);
options = trainingOptions('sgdm',...
'LearnRateSchedule','piecewise',...
'LearnRateDropFactor',0.1,...
'LearnRateDropPeriod',2,...
'MaxEpochs',10,...
'InitialLearnRate',0.001,...
'MiniBatchSize',miniBatchSize,...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',validationFrequency);
convnet = trainNetwork(augimdsTrain,lgraph,options);
[YPred] = classify(convnet,augimdsValidation);
plotconfusion(augimdsValidation.Labels,YPred)
2 件のコメント
Shivam Singh
2021 年 11 月 29 日
Hello Steven,
Can you share what is error which you are facing with code? Also, can you share more information about the model ("lgraph") and the dataset used?
回答 (1 件)
yanqi liu
2021 年 12 月 2 日
yes,sir,if want get the data information,may be use
[c,cm,ind,per] = confusion(augimdsValidation.Labels,YPred)
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Recognition, Object Detection, and Semantic Segmentation についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!