how to train LSTM with single input and two outputs?
12 ビュー (過去 30 日間)
古いコメントを表示
hello everyone,
I have question regarding the training of LSTM network. I want to train my network with 1 input and 2 outputs.
Network architecture is as:
layers = [ ...
sequenceInputLayer(numFeatures,'Normalization', 'zscore')
lstmLayer(numHiddenUnits,'OutputMode','sequence')
lstmLayer(numHiddenUnits,'OutputMode','sequence')
lstmLayer(numHiddenUnits2,'OutputMode','sequence')
lstmLayer(numHiddenUnits2,'OutputMode','sequence')
fullyConnectedLayer(numResponses)
regressionLayer];
with numFeatures=1 and numResponses=2.
Do i have to make custom regression layer for 2 output as i read that for multiple input and single output, custom regression layer is needed to train the network but there is no information for multiple out.
anybody can help me in this regard.
Thanks.
0 件のコメント
回答 (1 件)
参考
カテゴリ
Help Center および File Exchange で Sequence and Numeric Feature Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!