how to separate an audio file based on different speakers
11 ビュー (過去 30 日間)
古いコメントを表示
I have a conversation recorded of 2 different people, the conversation contains a gap before every sentence or person to make it easier for the algorithm recorgnise the voice. I want to try to split an audio file into two, each contains only one speaker's speech. Just wondering how would I go about this task?
0 件のコメント
回答 (3 件)
jibrahim
2021 年 11 月 18 日
Hi Andrei,
Speaker diarization is one way to address it. Check out this example:
0 件のコメント
Mathieu NOE
2021 年 11 月 18 日
hello
this is ùy suggestion : assuming we have a wav file, I take the absolute of the signal and smooth it to get a kind of enveloppe , then I look for time instants when this enveloppe will cross a gievn threshold; this give me time values for start and stop times for each person. Now remains to be done a code to select start and stop moments that are distant by a difference equal or superior to your gap value
clc
clearvars
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% data
[signal,Fs] = audioread('test_voice_mono.wav');
[samples,channels] = size(signal);
dt = 1/Fs;
time = (0:samples-1)*dt;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 1 : time domain plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% create the signal envelop
signal_abs = abs(signal);
se = smoothdata(signal_abs,'gaussian',500);
cor_coeff = max(signal_abs)./max(se);
se = se.*cor_coeff;
% se = envelope(abs(signal),500,'peak');
threshold = max(se)/4;
[t0_pos,s0_pos,t0_neg,s0_neg]= crossing_V7(se,time,threshold,'linear'); % positive (pos) and negative (neg) slope crossing points
% ind => time index (samples)
% t0 => corresponding time (x) values
% s0 => corresponding function (y) values , obviously they must be equal to "threshold"
figure(1),
plot(time,signal_abs,time,se,time,threshold*ones(size(time)),'k--',t0_pos,s0_pos,'dr',t0_neg,s0_neg,'dg','linewidth',2,'markersize',12);grid on
legend('signal (rectified)','signal envelope','threshold','positive slope crossing points','negative slope crossing points');
title(['Time plot / Fs = ' num2str(Fs) ' Hz ']);
xlabel('Time (s)');ylabel('Amplitude');
period = diff(t0_pos)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [t0_pos,s0_pos,t0_neg,s0_neg] = crossing_V7(S,t,level,imeth)
% [ind,t0,s0,t0close,s0close] = crossing_V6(S,t,level,imeth,slope_sign) % older format
% CROSSING find the crossings of a given level of a signal
% ind = CROSSING(S) returns an index vector ind, the signal
% S crosses zero at ind or at between ind and ind+1
% [ind,t0] = CROSSING(S,t) additionally returns a time
% vector t0 of the zero crossings of the signal S. The crossing
% times are linearly interpolated between the given times t
% [ind,t0] = CROSSING(S,t,level) returns the crossings of the
% given level instead of the zero crossings
% ind = CROSSING(S,[],level) as above but without time interpolation
% [ind,t0] = CROSSING(S,t,level,par) allows additional parameters
% par = {'none'|'linear'}.
% With interpolation turned off (par = 'none') this function always
% returns the value left of the zero (the data point thats nearest
% to the zero AND smaller than the zero crossing).
%
% check the number of input arguments
error(nargchk(1,4,nargin));
% check the time vector input for consistency
if nargin < 2 | isempty(t)
% if no time vector is given, use the index vector as time
t = 1:length(S);
elseif length(t) ~= length(S)
% if S and t are not of the same length, throw an error
error('t and S must be of identical length!');
end
% check the level input
if nargin < 3
% set standard value 0, if level is not given
level = 0;
end
% check interpolation method input
if nargin < 4
imeth = 'linear';
end
% make row vectors
t = t(:)';
S = S(:)';
% always search for zeros. So if we want the crossing of
% any other threshold value "level", we subtract it from
% the values and search for zeros.
S = S - level;
% first look for exact zeros
ind0 = find( S == 0 );
% then look for zero crossings between data points
S1 = S(1:end-1) .* S(2:end);
ind1 = find( S1 < 0 );
% bring exact zeros and "in-between" zeros together
ind = sort([ind0 ind1]);
% and pick the associated time values
t0 = t(ind);
s0 = S(ind);
if ~isempty(ind)
if strcmp(imeth,'linear')
% linear interpolation of crossing
for ii=1:length(t0)
%if abs(S(ind(ii))) >= eps(S(ind(ii))) % MATLAB V7 et +
if abs(S(ind(ii))) >= eps*abs(S(ind(ii))) % MATLAB V6 et - EPS * ABS(X)
% interpolate only when data point is not already zero
NUM = (t(ind(ii)+1) - t(ind(ii)));
DEN = (S(ind(ii)+1) - S(ind(ii)));
slope = NUM / DEN;
slope_sign(ii) = sign(slope);
t0(ii) = t0(ii) - S(ind(ii)) * slope;
s0(ii) = level;
end
end
end
% extract the positive slope crossing points
ind_pos = find(sign(slope_sign)>0);
t0_pos = t0(ind_pos);
s0_pos = s0(ind_pos);
% extract the negative slope crossing points
ind_neg = find(sign(slope_sign)<0);
t0_neg = t0(ind_neg);
s0_neg = s0(ind_neg);
else
% empty output
ind_pos = [];
t0_pos = [];
s0_pos = [];
% extract the negative slope crossing points
ind_neg = [];
t0_neg = [];
s0_neg = [];
end
end
2 件のコメント
Star Strider
2021 年 11 月 19 日
This is called Signal separation, blind source separation, and other terms. There are several ways to do it, one being independent component analysis, used in the rica function and related functions.
.
Star Strider
2021 年 11 月 19 日
This is called Signal separation, blind source separation, and other terms. There are several ways to do it, one being independent component analysis, used in the rica function and related functions.
.
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Audio I/O and Waveform Generation についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!