How to create a datastore for using the Deep Network Designer App?

16 ビュー (過去 30 日間)
xadu
xadu 2021 年 11 月 16 日
コメント済み: Atallah Baydoun 2023 年 7 月 21 日
I'm trying to use the Deep Network Designer app (R2021b) to perform regression between numeric inputs and outputs. I have prepared the trainind dataset in a matrix X of size n x f, where f is the number of features, and a matrix Y of size n x r, where r is the number of responses (n is the number of observations). Similarly, Xv and Yv hold the validation data. When I run the app, I see that it needs the data to be in a datastore, so I tried the following to make the appropriate datastores: (f = 3, r = 5, n = 500, n_val = 100).
ar_c = mat2cell([X Y],ones(500,1),[3,5]);
arv_c = mat2cell([Xv Yv],ones(100,1),[3,5]);
ds = arrayDatastore(ar_c,'OutputType','same');
ds_v = arrayDatastore(arv_c,'OutputType','same');
The datastores ds and ds_v get accepted as legitimate input (I can see the first 5 observations previewed).
But when I hit "train", I get the following error: Training with trainNetwork failed. Input datastore returned more than one observation per row for network input 1. (not sure why the "Don't" rules for posting recommend against pasting images of error messages).
As per the instructions given to mat2cell, I have only one row per observation (or so I think). Can someone please tell me what I'm doing wrong here? Thanks!

採用された回答

Srivardhan Gadila
Srivardhan Gadila 2021 年 11 月 19 日
From the above information, I think your input layer would be a featureInputLayer. So according to your training data, the output of read operation on the combined datastore should be as follows:
>> read(cds)
ans =
1×2 cell array
{3×1 double} {5×1 double}
For more information you can refer to the documentation of trainNetwork and desciption of training data format for feature data in case of a datastore: features - trainNetwork.
I am attaching code to generate random training data:
f = 3; r = 5; n = 5;
layers = [featureInputLayer(f)
fullyConnectedLayer(r)
regressionLayer];
xtrain = randn(f,n);
ytrain = randn(r,n);
xds = arrayDatastore(xtrain,IterationDimension=2);
yds = arrayDatastore(ytrain,IterationDimension=2);
cds = combine(xds,yds)
cds =
CombinedDatastore with properties: UnderlyingDatastores: {[1×1 matlab.io.datastore.ArrayDatastore] [1×1 matlab.io.datastore.ArrayDatastore]} SupportedOutputFormats: ["txt" "csv" "xlsx" "xls" "parquet" "parq" "png" "jpg" "jpeg" "tif" "tiff" "wav" "flac" "ogg" "mp4" "m4a"]
  5 件のコメント
Bahar Dadfar
Bahar Dadfar 2023 年 7 月 21 日
編集済み: Bahar Dadfar 2023 年 7 月 21 日
Atallah Baydoun
Atallah Baydoun 2023 年 7 月 21 日
Hey @Bahar Dadfar No, I was not able to solve this issue. At that time, I was trying to build a multi-modal network using Matlab. My inputs were 3D image and a vector of 4 features. The example of multi-modal network in Matlab uses 2D (not 3D Images) and I was getting this error. I reached out to the deep learning team in Matlab and this was not solved. I haven't checked for a while, but I think that Matlab still doesn't have a clear straightfroward process to do multi-modal networks and basically datasets.
Are you trying to do the same?

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeImage Data Workflows についてさらに検索

製品


リリース

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by