Need help coding Finite Difference Scheme for a partial differential equation with both time and space

14 ビュー (過去 30 日間)
Hi I need help coding a finite difference scheme for a partial differential equation. My math is correct and I have checked it with my professor but I cannot for the life of me get this code to work . I've included a picture of what the graph is supposed to look like. Also Included my code below.
Question:
Use a finite difference and Runge Kutta scheme to solve the following equation and then code the scheme and graph t=0 and t=2
Equation
Derived Finite difference scheme (Checked with Professor)
Runge Kutta Scheme for Time
Note: n is meant to represent the time space not an exponential
f represents the spatial discretization function
---
Solition Equation
---
Initial Conditions
Code:
clear; clc; close all;
global Nx Nt dx
%% Initial variables
tspan = [0 2];
dx = 0.1;
x = -10:dx:10;
Nx = length(x);
v = 20;
x0 = 0;
CFL = (4*sqrt(2)*sqrt(3))/9;
fprintf('%d\n',CFL)
dt = dx^3*CFL;
dt = 0.001;
t = 0:dt:2;
Nt = length(t);
u = zeros(length(x),length(t));
u1 = u;
%% solition solution
for i = 1:length(t)
for j = 1:length(x)
u1(j,i) = -v./(2*cosh(1/2.*sqrt(v).*(x(j)-v.*t(i)-x0))^2);
end
end
%% initial values case 1
u0 = u1(:,1); %u1(x,0);
u(:,1) = u0;
Loop for Runge Kutta Time space
for j = 1:Nt-1
uj1 = u(:,j);
a1 = dt*f5(uj1);
a2 = dt*f5(uj1+1/2*a1);
a3 = dt*f5(uj1+1/2*a2);
a4 = dt*f5(uj1+a3);
u(:,j+1) = uj1+1/6*(a1+2*(a2+a3)+a4);
%peridoic boundary
u(1,j+1) = u0(1);
u(end,j+1) = u0(end);
end
%% Graph
figure()
hold on
plot(x,u1(:,1))
plot(x,u(:,10),'r')
hold off
Function For Spacial Disc
I used an iterative function but I tried other ones too that I will attach below
function fufu = f5(u)
global Nx dx
u2 = zeros(Nx,1);
for i = 1:Nx
if (i == 1) %use forward diff
a1 = (u(i+1)-u(i))/dx;
b1 = 1/(2*dx^3)*(-5*u(i)+18*u(i+1)-24*u(i+2)+14*u(i+3)-3*u(i+4));
u2(i) = 6*u(i)*a1 - b1;
elseif i == 2
a1 = (u(i+1)-u(i-1))/(2*dx);
b1 = 1/(2*dx^3)*(-5*u(i)+18*u(i+1)-24*u(i+2)+14*u(i+3)-3*u(i+4));
u2(i) = 6*u(i)*a1 - b1;
elseif (i == Nx)
a1 = (-u(i-1)+u(i))/dx;
b1 = 1/(2*dx^3)*(5*u(i)-18*u(i-1)+24*u(i-2)-14*u(i-3)+3*u(i-4));
u2(i) = 6*u(i)*a1 - b1;
elseif i == Nx-1
a1 = (u(i+1)-u(i-1))/(2*dx);
b1 = 1/(2*dx^3)*(5*u(i)-18*u(i-1)+24*u(i-2)-14*u(i-3)+3*u(i-4));
u2(i) = 6*u(i)*a1 - b1;
else
a1 = (u(i+1)-u(i-1))/(2*dx);
b1 = (u(i+2)-2*u(i+1)+2*u(i-1)-u(i-2))/(2*dx^3);
u2(i) = 6*u(i)*(a1) - b1;
end
end
Other Functions I've Tried:
I tried using matrix inversion, other forms of iterative and even a vectorized approach but nothing seems to work
function udot = f(u)
global Nx dx
u0 = u;
uj = zeros(size(u));
for i = 3:Nx-3
uj(i) = u(i)*6*((u(i+1)-u(i-1))/(2*dx)) - (u(i+2)-2*u(i+1)+2*u(i-1)-u(i-2))/(2*dx^3);
end
uj(1:2) = u(1:2);
uj(Nx-1:Nx) = u(Nx-1:Nx);
uj(1) = uj(end);
udot = uj;
end
function uFun = f2(u)
global Nx dx
u0 = u;
a = 1/(2*dx);
dd(1:Nx) = 0;
du(1:Nx-1) = 1;
dl(1:Nx-1) = 1;
A = diag(dd)+diag(dl,-1)+diag(du,1);
A = sparse(A);
b = zeros(Nx,1);
b(1) = u0(end);
b(2:end) = u0(2:end)/(6*dx);
uFun = A\b;
end
%1st derivative
%6u*ux = whatever
function u2 = ufu(u)
global Nx dx
a = 1/(2*dx);
c = 1/dx^2;
dd(1:Nx) = 0;
d1(1:Nx-1) = dx^2*6*u(2:Nx) + 2;
d2(1:Nx-1) = -dx^2*6*u(2:Nx)- 2;
d3(1:Nx-2) = -1; %(u(i+1))
d4(1:Nx-2) = 1;
A = diag(dd)+diag(d1,1)+diag(d2,-1)+diag(d3,2)+diag(d4,-2);
A = sparse(A);
b = zeros(Nx,1);
b(1:Nx) = 2*dx^3*u(1:Nx);
u2 = A\b;
u2(1) = u2(end);
end
% Try just the simplified version
function ufun = f3(u)
global Nx dx
ut = diff(u); %du/dt
ut =[ut;0];
b = 1/(2*dx^3);
dd(1:Nx) = 0;
dL1(1:Nx-1) = -2*b;
dL2(1:Nx-2) = b;
dR1(1:Nx-1) = 2*b;
dR2(1:Nx-2) = -b;
A = diag(dd)+diag(dL1,-1)+diag(dL2,-2)+diag(dR1,1)+diag(dR2,2);
A = sparse(A);
A(:,1) = 0;
A(1,1) = 1;
A(:,end) = 0;
A(end,end) = 1;
b1 = zeros(size(u));
b1(1:Nx) = ut(1:Nx);
b1(1) = b(end);
ufun = A\b1;
end
% Trying iterative method again
function UT = f4(u)
global Nx dx
dudt = diff(u);
dudt = [dudt;0];
u2 = zeros(Nx,1);
for i = 1:length(u)
if i == 1
u2(i) = u(end);
% a1 = (u(i+1)-u(end-1))/(2*dx);
% u2(i) = 6*u(i)*a1 - (u(i+2)-2*u(i+1)+2*u(end-1)-u(end-2))/(2*dx^3);
elseif i == 2
a1 = (u(i+1)-u(i-1))/(2*dx);
u2(i) = 6*u(i)*a1 - (u(i+2)-2*u(i+1)+2*u(i-1))/(2*dx^3);
elseif i == Nx-1
a1 = (u(i+1)-u(i-1))/(2*dx);
u2(i) = 6*u(i)*a1 - (-2*u(i+1)+2*u(i-1)+u(i-2))/(2*dx^3);
elseif i == Nx
u2(i) = u(end);
% a1 = (u(2)-u(i-1))/(2*dx);
% u2(i) = 6*u(i)*a1 - (u(3)-2*u(2)+2*u(i-1)+u(i-2))/(2*dx^3);
elseif (i > 2) && (i < Nx-1)
a1 = (u(i+1)-u(i-1))/(2*dx);
b1 = (u(i+2)-2*u(i+1)+2*u(i-1)-u(i-2))/(2*dx^3);
u2(i) = 6*u(i)*(a1) - b1;
end
end
% u2(1) = u2(end);
UT = u2;
end
What the correct code should look like

回答 (0 件)

カテゴリ

Help Center および File ExchangeProgramming についてさらに検索

製品


リリース

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by