Observer design using observability staircase form
2 ビュー (過去 30 日間)
古いコメントを表示
My original system (A, B, C, D) is observable, however, when I convert it to observability staircase form using obsvf function, the new system (Abar, Bbar, Cbar, Dbar) becomes observable.
A = [0, 1, 0;
-807130.825379001, -1372.23052244462, 0.0223832471519321;
350984563219.344, -417971392224.394, -277869.165644330];
B = [0;
0;
276502.948306206];
C = [0,0,1];
D = 0;
Obsv_matrix = obsv(A,C);
if rank(Obsv_matrix) == size(A,1)
disp('Original system is observable');
else
disp('Original system is unobservable');
end
[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C);
Dbar = D;
Obsv_new = obsv(Abar,Cbar);
if rank(Obsv_new,1e-10) == size(Abar,1)
disp('Modified system is observable');
else
disp('Modified system is unobservable');
end
My question is: if I design an observer gain Lbar for the new system using:
desired_poles = [-150-150*j, -150+150*j, -150];
Lbar = place(Abar',Cbar',desired_poles)'
is it possible to use the transformation matrix T to transform Lbar to find L that will be the observer gain for the original system? If not, what is the (intuitive) purpose of doing this transformation in the first place?
Thanks for your help in advance. Really appreciate any input.
0 件のコメント
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Robust Control Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!