Phase portraits of differential equations
5 ビュー (過去 30 日間)
古いコメントを表示
Ilias Minas
2021 年 10 月 31 日
編集済み: Sulaymon Eshkabilov
2021 年 10 月 31 日
Hi all,
I am trying to sketch the phase portraits of the following differential equations, seperately
x˙ = 1 − 2 cos x
and
x˙=-x + 1/(1 + e^(-8 x)) - 0.5
I used some existing matlab codes that i found however it wasnt possible to draw the phase portraits.
Could you please help me with this?
Thank you very much
0 件のコメント
採用された回答
Sulaymon Eshkabilov
2021 年 10 月 31 日
編集済み: Sulaymon Eshkabilov
2021 年 10 月 31 日
Step 1. Take a derivative of your function 1 (F1) and 2 (F2) and save them dF1 and dF2. You can use syms x and diff() here.
Step 2. Compute their values (F1(x), F2(x), dF1(x), dF2(x)) at x (e.g.: x = -pi... pi). You can use subs() or just plugin the values of x into the expressions of F1, F2, dF1, dF2.
Step 3. Plot the computed values: F1 vs. dF1 in Figure 1 and F2 vs. dF2 in Figure 2. This is a phase plot.
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Calculus についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!