SVM classification with custom kernel
2 ビュー (過去 30 日間)
古いコメントを表示
I am using an SVM (SVM_train, Bioinformatics toolbox) to classify data, and I would like to have my final trained SVM models with different kernel functions. I didn't understand how to specify my own kernel maps: if I would like to use a Cauchy kernel defined as
k=(1/(1+(|u-v|^2/sigma))
where u,v are the vectors of the X data, and sigma is the parameter defined by the user (sigma=2.5).
Matlab gives me a warning message: Error using ==> svmtrain at 453 Error calculating the kernel function: Matrix dimensions must agree.
I do not understand where is my mistake. If you can help me I really appreciate.
Thank you!
0 件のコメント
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Statistics and Machine Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!