Feature selection / Dimensionality reduction for tall array

3 ビュー (過去 30 日間)
Santiago Cepeda
Santiago Cepeda 2021 年 10 月 22 日
コメント済み: Santiago Cepeda 2021 年 10 月 29 日
Hi everyone!
I work with a tall array of more than 2 M observations and about 3000 numerical predictor variables. My response variable is binary (no / yes). I would like to know how and what algorithms I can use to select (or rank) the best features to develop a predictive model.
Thanks.

回答 (1 件)

Kumar Pallav
Kumar Pallav 2021 年 10 月 29 日
Hi,
Please look at the various feature selection techniques available in Statistics and Machine Learning Toolbox. As an example, you can use fscmrmr function for classification problems. Alternatively, you can use pca to reduce the dimensionality of the feature space.
Hope this helps!
  3 件のコメント
Santiago Cepeda
Santiago Cepeda 2021 年 10 月 29 日
I’m working with tall arrays so, how should I write the command?

サインインしてコメントする。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by